Computer Science > Software Engineering
[Submitted on 12 Jul 2024]
Title:Towards More Trustworthy and Interpretable LLMs for Code through Syntax-Grounded Explanations
View PDF HTML (experimental)Abstract:Trustworthiness and interpretability are inextricably linked concepts for LLMs. The more interpretable an LLM is, the more trustworthy it becomes. However, current techniques for interpreting LLMs when applied to code-related tasks largely focus on accuracy measurements, measures of how models react to change, or individual task performance instead of the fine-grained explanations needed at prediction time for greater interpretability, and hence trust. To improve upon this status quo, this paper introduces ASTrust, an interpretability method for LLMs of code that generates explanations grounded in the relationship between model confidence and syntactic structures of programming languages. ASTrust explains generated code in the context of syntax categories based on Abstract Syntax Trees and aids practitioners in understanding model predictions at both local (individual code snippets) and global (larger datasets of code) levels. By distributing and assigning model confidence scores to well-known syntactic structures that exist within ASTs, our approach moves beyond prior techniques that perform token-level confidence mapping by offering a view of model confidence that directly aligns with programming language concepts with which developers are familiar. To put ASTrust into practice, we developed an automated visualization that illustrates the aggregated model confidence scores superimposed on sequence, heat-map, and graph-based visuals of syntactic structures from ASTs. We examine both the practical benefit that ASTrust can provide through a data science study on 12 popular LLMs on a curated set of GitHub repos and the usefulness of ASTrust through a human study.
Submission history
From: David N. Palacio [view email][v1] Fri, 12 Jul 2024 04:38:28 UTC (1,256 KB)
Current browse context:
cs.SE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.