Computer Science > Machine Learning
[Submitted on 12 Jul 2024 (v1), last revised 28 Oct 2024 (this version, v2)]
Title:RIO-CPD: A Riemannian Geometric Method for Correlation-aware Online Change Point Detection
View PDF HTML (experimental)Abstract:Change point detection aims to identify abrupt shifts occurring at multiple points within a data sequence. This task becomes particularly challenging in the online setting, where different types of changes can occur, including shifts in both the marginal and joint distributions of the data. In this paper, we address these challenges by tracking the Riemannian geometry of correlation matrices, allowing Riemannian metrics to compute the geodesic distance as an accurate measure of correlation dynamics. We introduce Rio-CPD, a non-parametric, correlation-aware online change point detection framework that integrates the Riemannian geometry of the manifold of symmetric positive definite matrices with the cumulative sum (CUSUM) statistic for detecting change points. Rio-CPD employs a novel CUSUM design by computing the geodesic distance between current observations and the Fréchet mean of prior observations. With appropriate choices of Riemannian metrics, Rio-CPD offers a simple yet effective and computationally efficient algorithm. Experimental results on both synthetic and real-world datasets demonstrate that Rio-CPD outperforms existing methods on detection accuracy, average detection delay and efficiency.
Submission history
From: Chengyuan Deng [view email][v1] Fri, 12 Jul 2024 21:42:51 UTC (1,223 KB)
[v2] Mon, 28 Oct 2024 15:27:01 UTC (1,679 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.