Computer Science > Machine Learning
[Submitted on 6 Jul 2024]
Title:High-Quality and Full Bandwidth Seismic Signal Synthesis using Operational GANs
View PDFAbstract:Vibration sensors are essential in acquiring seismic activity for an accurate earthquake assessment. The state-of-the-art sensors can provide the best signal quality and the highest bandwidth; however, their high cost usually hinders a wide range of applicability and coverage, which is otherwise possible with their basic and cheap counterparts. But, their poor quality and low bandwidth can significantly degrade the signal fidelity and result in an imprecise analysis. To address these drawbacks, in this study, we propose a novel, high-quality, and full bandwidth seismic signal synthesis by transforming the signal acquired from an inferior sensor. We employ 1D Operational Generative Adversarial Networks (Op-GANs) with novel loss functions to achieve this. Therefore, the study's key contributions include releasing a new dataset, addressing operational constraints in seismic monitoring, and pioneering a deep-learning transformation technique to create the first virtual seismic sensor. The proposed method is extensively evaluated over the Simulated Ground Motion (SimGM) benchmark dataset, and the results demonstrated that the proposed approach significantly improves the quality and bandwidth of seismic signals acquired from a variety of sensors, including a cheap seismic sensor, the CSN-Phidgets, and the integrated accelerometers of an Android, and iOS phone, to the same level as the state-of-the-art sensor (e.g., Kinemetrics-Episensor). The SimGM dataset, our results, and the optimized PyTorch implementation of the proposed approach are publicly shared.
Submission history
From: Ozer Can Devecioglu [view email][v1] Sat, 6 Jul 2024 08:07:23 UTC (2,842 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.