Computer Science > Machine Learning
[Submitted on 20 Jul 2024]
Title:Enhancing High-Energy Particle Physics Collision Analysis through Graph Data Attribution Techniques
View PDF HTML (experimental)Abstract:The experiments at the Large Hadron Collider at CERN generate vast amounts of complex data from high-energy particle collisions. This data presents significant challenges due to its volume and complex reconstruction, necessitating the use of advanced analysis techniques for analysis. Recent advancements in deep learning, particularly Graph Neural Networks, have shown promising results in addressing the challenges but remain computationally expensive. The study presented in this paper uses a simulated particle collision dataset to integrate influence analysis inside the graph classification pipeline aiming at improving the accuracy and efficiency of collision event prediction tasks. By using a Graph Neural Network for initial training, we applied a gradient-based data influence method to identify influential training samples and then we refined the dataset by removing non-contributory elements: the model trained on this new reduced dataset can achieve good performances at a reduced computational cost. The method is completely agnostic to the specific influence method: different influence modalities can be easily integrated into our methodology. Moreover, by analyzing the discarded elements we can provide further insights about the event classification task. The novelty of integrating data attribution techniques together with Graph Neural Networks in high-energy physics tasks can offer a robust solution for managing large-scale data problems, capturing critical patterns, and maximizing accuracy across several high-data demand domains.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.