Computer Science > Social and Information Networks
[Submitted on 22 Jul 2024 (v1), last revised 24 Jul 2024 (this version, v3)]
Title:A Large-scale Benchmark Dataset for Commuting Origin-destination Matrix Generation
View PDF HTML (experimental)Abstract:The commuting origin-destination~(OD) matrix is a critical input for urban planning and transportation, providing crucial information about the population residing in one region and working in another within an interested area. Despite its importance, obtaining and updating the matrix is challenging due to high costs and privacy concerns. This has spurred research into generating commuting OD matrices for areas lacking historical data, utilizing readily available information via computational models. In this regard, existing research is primarily restricted to only a single or few large cities, preventing these models from being applied effectively in other areas with distinct characteristics, particularly in towns and rural areas where such data is urgently needed. To address this, we propose a large-scale dataset comprising commuting OD matrices for 3,233 diverse areas around the U.S. For each area, we provide the commuting OD matrix, combined with regional attributes including demographics and point-of-interests of each region in that area. We believe this comprehensive dataset will facilitate the development of more generalizable commuting OD matrix generation models, which can capture various patterns of distinct areas. Additionally, we use this dataset to benchmark a set of commuting OD generation models, including physical models, element-wise predictive models, and matrix-wise generative models. Surprisingly, we find a new paradigm, which considers the whole area combined with its commuting OD matrix as an attributed directed weighted graph and generates the weighted edges based on the node attributes, can achieve the optimal. This may inspire a new research direction from graph learning in this field.
Submission history
From: Can Rong [view email][v1] Mon, 22 Jul 2024 17:37:04 UTC (9,921 KB)
[v2] Tue, 23 Jul 2024 17:02:56 UTC (9,921 KB)
[v3] Wed, 24 Jul 2024 00:59:05 UTC (9,921 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.