Computer Science > Machine Learning
[Submitted on 24 Jul 2024]
Title:Quantum Supervised Learning
View PDF HTML (experimental)Abstract:Recent advancements in quantum computing have positioned it as a prospective solution for tackling intricate computational challenges, with supervised learning emerging as a promising domain for its application. Despite this potential, the field of quantum machine learning is still in its early stages, and there persists a level of skepticism regarding a possible near-term quantum advantage. This paper aims to provide a classical perspective on current quantum algorithms for supervised learning, effectively bridging traditional machine learning principles with advancements in quantum machine learning. Specifically, this study charts a research trajectory that diverges from the predominant focus of quantum machine learning literature, originating from the prerequisites of classical methodologies and elucidating the potential impact of quantum approaches. Through this exploration, our objective is to deepen the understanding of the convergence between classical and quantum methods, thereby laying the groundwork for future advancements in both domains and fostering the involvement of classical practitioners in the field of quantum machine learning.
Submission history
From: Antonio Macaluso Dr. [view email][v1] Wed, 24 Jul 2024 11:05:05 UTC (691 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.