Statistics > Machine Learning
[Submitted on 24 Jul 2024]
Title:Enhanced Feature Learning via Regularisation: Integrating Neural Networks and Kernel Methods
View PDF HTML (experimental)Abstract:We propose a new method for feature learning and function estimation in supervised learning via regularised empirical risk minimisation. Our approach considers functions as expectations of Sobolev functions over all possible one-dimensional projections of the data. This framework is similar to kernel ridge regression, where the kernel is $\mathbb{E}_w ( k^{(B)}(w^\top x,w^\top x^\prime))$, with $k^{(B)}(a,b) := \min(|a|, |b|)1_{ab>0}$ the Brownian kernel, and the distribution of the projections $w$ is learnt. This can also be viewed as an infinite-width one-hidden layer neural network, optimising the first layer's weights through gradient descent and explicitly adjusting the non-linearity and weights of the second layer. We introduce an efficient computation method for the estimator, called Brownian Kernel Neural Network (BKerNN), using particles to approximate the expectation. The optimisation is principled due to the positive homogeneity of the Brownian kernel. Using Rademacher complexity, we show that BKerNN's expected risk converges to the minimal risk with explicit high-probability rates of $O( \min((d/n)^{1/2}, n^{-1/6}))$ (up to logarithmic factors). Numerical experiments confirm our optimisation intuitions, and BKerNN outperforms kernel ridge regression, and favourably compares to a one-hidden layer neural network with ReLU activations in various settings and real data sets.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.