Computer Science > Cryptography and Security
[Submitted on 25 Jul 2024]
Title:Utilizing Blockchain and Smart Contracts for Enhanced Fraud Prevention and Minimization in Health Insurance through Multi-Signature Claim Processing
View PDF HTML (experimental)Abstract:Healthcare insurance provides financial support to access medical services for patients while ensuring timely and guaranteed payment for providers. Insurance fraud poses a significant challenge to insurance companies and policyholders, leading to increased costs and compromised healthcare treatment and service delivery. Most frauds, like phantom billing, upcoding, and unbundling, happen due to the lack of required entity participation. Also, claim activities are not transparent and accountable. Fraud can be prevented and minimized by involving every entity and making actions transparent and accountable. This paper proposes a blockchain-powered smart contract-based insurance claim processing mechanism to prevent and minimize fraud in response to this prevailing issue. All entities patients, providers, and insurance companies actively participate in the claim submission, approval, and acknowledgment process through a multi-signature technique. Also, every activity is captured and recorded in the blockchain using smart contracts to make every action transparent and accountable so that no entity can deny its actions and responsibilities. Blockchains' immutable storage property and strong integrity guarantee that recorded activities are not modified. As healthcare systems and insurance companies continue to deal with fraud challenges, this proposed approach holds the potential to significantly reduce fraudulent activities, ultimately benefiting both insurers and policyholders.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.