Computer Science > Machine Learning
[Submitted on 31 Jul 2024 (v1), last revised 7 Aug 2024 (this version, v2)]
Title:FedBChain: A Blockchain-enabled Federated Learning Framework for Improving DeepConvLSTM with Comparative Strategy Insights
View PDF HTML (experimental)Abstract:Recent research in the field of Human Activity Recognition has shown that an improvement in prediction performance can be achieved by reducing the number of LSTM layers. However, this kind of enhancement is only significant on monolithic architectures, and when it runs on large-scale distributed training, data security and privacy issues will be reconsidered, and its prediction performance is unknown. In this paper, we introduce a novel framework: FedBChain, which integrates the federated learning paradigm based on a modified DeepConvLSTM architecture with a single LSTM layer. This framework performs comparative tests of prediction performance on three different real-world datasets based on three different hidden layer units (128, 256, and 512) combined with five different federated learning strategies, respectively. The results show that our architecture has significant improvements in Precision, Recall and F1-score compared to the centralized training approach on all datasets with all hidden layer units for all strategies: FedAvg strategy improves on average by 4.54%, FedProx improves on average by 4.57%, FedTrimmedAvg improves on average by 4.35%, Krum improves by 4.18% on average, and FedAvgM improves by 4.46% on average. Based on our results, it can be seen that FedBChain not only improves in performance, but also guarantees the security and privacy of user data compared to centralized training methods during the training process. The code for our experiments is publicly available (this https URL).
Submission history
From: Gaoxuan Li [view email][v1] Wed, 31 Jul 2024 02:12:05 UTC (226 KB)
[v2] Wed, 7 Aug 2024 07:00:13 UTC (226 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.