Computer Science > Hardware Architecture
[Submitted on 31 Jul 2024]
Title:EdgeLLM: A Highly Efficient CPU-FPGA Heterogeneous Edge Accelerator for Large Language Models
View PDFAbstract:The rapid advancements in artificial intelligence (AI), particularly the Large Language Models (LLMs), have profoundly affected our daily work and communication forms. However, the colossal scale of LLM presents significant operational challenges, particularly when attempting to deploy them on resource-constrained edge devices such as smartphones, robots, and embedded systems. In this work, we proposed EdgeLLM, an efficient CPU-FPGA heterogeneous acceleration framework, to markedly enhance the computational efficiency of LLMs on edge. We first analyzed the whole operators within AI models and developed a universal data parallelism scheme, which is generic and can be adapted to any type of AI algorithm. Then, we developed fully-customized hardware operators according to the designated data formats. A multitude of optimization techniques have been integrated in the design, such as approximate FP16*INT4 and FP16*FP16 computation engines, group vector systolic arrays, log-scale structured sparsity, asynchronous between data transfer and processing. Finally, we proposed an end-to-end compilation scheme that can dynamically compile all of the operators and map the whole model on CPU-FPGA heterogeneous system. The design has been deployed on AMD Xilinx VCU128 FPGA, our accelerator achieves 1.67x higher throughput and 7.4x higher energy efficiency than the commercial GPU (NVIDIA A100-SXM4-80G) on ChatGLM2-6B, and shows 10%~20% better performance than state-of-the-art FPGA accelerator of FlightLLM in terms of HBM bandwidth utilization and LLM throughput.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.