Computer Science > Computer Vision and Pattern Recognition
[Submitted on 31 Jul 2024]
Title:Skeleton-Based Action Recognition with Spatial-Structural Graph Convolution
View PDF HTML (experimental)Abstract:Human Activity Recognition (HAR) is a field of study that focuses on identifying and classifying human activities. Skeleton-based Human Activity Recognition has received much attention in recent years, where Graph Convolutional Network (GCN) based method is widely used and has achieved remarkable results. However, the representation of skeleton data and the issue of over-smoothing in GCN still need to be studied. 1). Compared to central nodes, edge nodes can only aggregate limited neighbor information, and different edge nodes of the human body are always structurally related. However, the information from edge nodes is crucial for fine-grained activity recognition. 2). The Graph Convolutional Network suffers from a significant over-smoothing issue, causing nodes to become increasingly similar as the number of network layers increases. Based on these two ideas, we propose a two-stream graph convolution method called Spatial-Structural GCN (SpSt-GCN). Spatial GCN performs information aggregation based on the topological structure of the human body, and structural GCN performs differentiation based on the similarity of edge node sequences. The spatial connection is fixed, and the human skeleton naturally maintains this topology regardless of the actions performed by humans. However, the structural connection is dynamic and depends on the type of movement the human body is performing. Based on this idea, we also propose an entirely data-driven structural connection, which greatly increases flexibility. We evaluate our method on two large-scale datasets, i.e., NTU RGB+D and NTU RGB+D 120. The proposed method achieves good results while being efficient.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.