Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 Aug 2024 (v1), last revised 9 Oct 2024 (this version, v3)]
Title:FlowDreamer: Exploring High Fidelity Text-to-3D Generation via Rectified Flow
View PDF HTML (experimental)Abstract:Recent advances in text-to-3D generation have made significant progress. In particular, with the pretrained diffusion models, existing methods predominantly use Score Distillation Sampling (SDS) to train 3D models such as Neural RaRecent advances in text-to-3D generation have made significant progress. In particular, with the pretrained diffusion models, existing methods predominantly use Score Distillation Sampling (SDS) to train 3D models such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3D GS). However, a hurdle is that they often encounter difficulties with over-smoothing textures and over-saturating colors. The rectified flow model -- which utilizes a simple ordinary differential equation (ODE) to represent a straight trajectory -- shows promise as an alternative prior to text-to-3D generation. It learns a time-independent vector field, thereby reducing the ambiguity in 3D model update gradients that are calculated using time-dependent scores in the SDS framework. In light of this, we first develop a mathematical analysis to seamlessly integrate SDS with rectified flow model, paving the way for our initial framework known as Vector Field Distillation Sampling (VFDS). However, empirical findings indicate that VFDS still results in over-smoothing outcomes. Therefore, we analyze the grounding reasons for such a failure from the perspective of ODE trajectories. On top, we propose a novel framework, named FlowDreamer, which yields high fidelity results with richer textual details and faster convergence. The key insight is to leverage the coupling and reversible properties of the rectified flow model to search for the corresponding noise, rather than using randomly sampled noise as in VFDS. Accordingly, we introduce a novel Unique Couple Matching (UCM) loss, which guides the 3D model to optimize along the same trajectory.
Submission history
From: Hangyu Li [view email][v1] Fri, 9 Aug 2024 11:40:20 UTC (6,819 KB)
[v2] Fri, 13 Sep 2024 02:41:09 UTC (15,039 KB)
[v3] Wed, 9 Oct 2024 06:05:53 UTC (29,270 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.