Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Jul 2024]
Title:AyE-Edge: Automated Deployment Space Search Empowering Accuracy yet Efficient Real-Time Object Detection on the Edge
View PDF HTML (experimental)Abstract:Object detection on the edge (Edge-OD) is in growing demand thanks to its ever-broad application prospects. However, the development of this field is rigorously restricted by the deployment dilemma of simultaneously achieving high accuracy, excellent power efficiency, and meeting strict real-time requirements. To tackle this dilemma, we propose AyE-Edge, the first-of-this-kind development tool that explores automated algorithm-device deployment space search to realize Accurate yet power-Efficient real-time object detection on the Edge. Through a collaborative exploration of keyframe selection, CPU-GPU configuration, and DNN pruning strategy, AyE-Edge excels in extensive real-world experiments conducted on a mobile device. The results consistently demonstrate AyE-Edge's effectiveness, realizing outstanding real-time performance, detection accuracy, and notably, a remarkable 96.7% reduction in power consumption, compared to state-of-the-art (SOTA) competitors.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.