Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Aug 2024]
Title:PixelFade: Privacy-preserving Person Re-identification with Noise-guided Progressive Replacement
View PDF HTML (experimental)Abstract:Online person re-identification services face privacy breaches from potential data leakage and recovery attacks, exposing cloud-stored images to malicious attackers and triggering public concern. The privacy protection of pedestrian images is crucial. Previous privacy-preserving person re-identification methods are unable to resist recovery attacks and compromise accuracy. In this paper, we propose an iterative method (PixelFade) to optimize pedestrian images into noise-like images to resist recovery attacks. We first give an in-depth study of protected images from previous privacy methods, which reveal that the chaos of protected images can disrupt the learning of recovery models. Accordingly, Specifically, we propose Noise-guided Objective Function with the feature constraints of a specific authorization model, optimizing pedestrian images to normal-distributed noise images while preserving their original identity information as per the authorization model. To solve the above non-convex optimization problem, we propose a heuristic optimization algorithm that alternately performs the Constraint Operation and the Partial Replacement Operation. This strategy not only safeguards that original pixels are replaced with noises to protect privacy, but also guides the images towards an improved optimization direction to effectively preserve discriminative features. Extensive experiments demonstrate that our PixelFade outperforms previous methods in resisting recovery attacks and Re-ID performance. The code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.