Computer Science > Machine Learning
[Submitted on 17 Aug 2024 (v1), last revised 23 Aug 2024 (this version, v2)]
Title:Graph Classification with GNNs: Optimisation, Representation and Inductive Bias
View PDF HTML (experimental)Abstract:Theoretical studies on the representation power of GNNs have been centered around understanding the equivalence of GNNs, using WL-Tests for detecting graph isomorphism. In this paper, we argue that such equivalence ignores the accompanying optimization issues and does not provide a holistic view of the GNN learning process. We illustrate these gaps between representation and optimization with examples and experiments. We also explore the existence of an implicit inductive bias (e.g. fully connected networks prefer to learn low frequency functions in their input space) in GNNs, in the context of graph classification tasks. We further prove theoretically that the message-passing layers in the graph, have a tendency to search for either discriminative subgraphs, or a collection of discriminative nodes dispersed across the graph, depending on the different global pooling layers used. We empirically verify this bias through experiments over real-world and synthetic datasets. Finally, we show how our work can help in incorporating domain knowledge via attention based architectures, and can evince their capability to discriminate coherent subgraphs.
Submission history
From: Krishna P Kumar [view email][v1] Sat, 17 Aug 2024 18:15:44 UTC (589 KB)
[v2] Fri, 23 Aug 2024 09:55:08 UTC (577 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.