Computer Science > Machine Learning
[Submitted on 21 Aug 2024]
Title:Energy Estimation of Last Mile Electric Vehicle Routes
View PDF HTML (experimental)Abstract:Last-mile carriers increasingly incorporate electric vehicles (EVs) into their delivery fleet to achieve sustainability goals. This goal presents many challenges across multiple planning spaces including but not limited to how to plan EV routes. In this paper, we address the problem of predicting energy consumption of EVs for Last-Mile delivery routes using deep learning. We demonstrate the need to move away from thinking about range and we propose using energy as the basic unit of analysis. We share a range of deep learning solutions, beginning with a Feed Forward Neural Network (NN) and Recurrent Neural Network (RNN) and demonstrate significant accuracy improvements relative to pure physics-based and distance-based approaches. Finally, we present Route Energy Transformer (RET) a decoder-only Transformer model sized according to Chinchilla scaling laws. RET yields a +217 Basis Points (bps) improvement in Mean Absolute Percentage Error (MAPE) relative to the Feed Forward NN and a +105 bps improvement relative to the RNN.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.