Computer Science > Software Engineering
[Submitted on 22 Aug 2024 (v1), last revised 22 Sep 2024 (this version, v2)]
Title:Enhancing Automated Program Repair with Solution Design
View PDF HTML (experimental)Abstract:Automatic Program Repair (APR) endeavors to autonomously rectify issues within specific projects, which generally encompasses three categories of tasks: bug resolution, new feature development, and feature enhancement. Despite extensive research proposing various methodologies, their efficacy in addressing real issues remains unsatisfactory. It's worth noting that, typically, engineers have design rationales (DR) on solution-planed solutions and a set of underlying reasons-before they start patching code. In open-source projects, these DRs are frequently captured in issue logs through project management tools like Jira. This raises a compelling question: How can we leverage DR scattered across the issue logs to efficiently enhance APR? To investigate this premise, we introduce DRCodePilot, an approach designed to augment GPT-4-Turbo's APR capabilities by incorporating DR into the prompt instruction. Furthermore, given GPT-4's constraints in fully grasping the broader project context and occasional shortcomings in generating precise identifiers, we have devised a feedback-based self-reflective framework, in which we prompt GPT-4 to reconsider and refine its outputs by referencing a provided patch and suggested identifiers. We have established a benchmark comprising 938 issue-patch pairs sourced from two open-source repositories hosted on GitHub and Jira. Our experimental results are impressive: DRCodePilot achieves a full-match ratio that is a remarkable 4.7x higher than when GPT-4 is utilized directly. Additionally, the CodeBLEU scores also exhibit promising enhancements. Moreover, our findings reveal that the standalone application of DR can yield promising increase in the full-match ratio across CodeLlama, GPT-3.5, and GPT-4 within our benchmark suite. We believe that our DRCodePilot initiative heralds a novel human-in-the-loop avenue for advancing the field of APR.
Submission history
From: Dong Hao Yang [view email][v1] Thu, 22 Aug 2024 01:13:02 UTC (13,074 KB)
[v2] Sun, 22 Sep 2024 03:16:38 UTC (14,019 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.