Computer Science > Neural and Evolutionary Computing
[Submitted on 8 Aug 2024]
Title:A frugal Spiking Neural Network for unsupervised classification of continuous multivariate temporal data
View PDFAbstract:As neural interfaces become more advanced, there has been an increase in the volume and complexity of neural data recordings. These interfaces capture rich information about neural dynamics that call for efficient, real-time processing algorithms to spontaneously extract and interpret patterns of neural dynamics. Moreover, being able to do so in a fully unsupervised manner is critical as patterns in vast streams of neural data might not be easily identifiable by the human eye. Formal Deep Neural Networks (DNNs) have come a long way in performing pattern recognition tasks for various static and sequential pattern recognition applications. However, these networks usually require large labeled datasets for training and have high power consumption preventing their future embedding in active brain implants. An alternative aimed at addressing these issues are Spiking Neural Networks (SNNs) which are neuromorphic and use more biologically plausible neurons with evolving membrane potentials. In this context, we introduce here a frugal single-layer SNN designed for fully unsupervised identification and classification of multivariate temporal patterns in continuous data with a sequential approach. We show that, with only a handful number of neurons, this strategy is efficient to recognize highly overlapping multivariate temporal patterns, first on simulated data, and then on Mel Cepstral representations of speech sounds and finally on multichannel neural data. This approach relies on several biologically inspired plasticity rules, including Spike-timing-dependent plasticity (STDP), Short-term plasticity (STP) and intrinsic plasticity (IP). These results pave the way towards highly frugal SNNs for fully unsupervised and online-compatible learning of complex multivariate temporal patterns for future embedding in dedicated very-low power hardware.
Current browse context:
cs.NE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.