Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 25 Aug 2024]
Title:Anatomical Consistency Distillation and Inconsistency Synthesis for Brain Tumor Segmentation with Missing Modalities
View PDF HTML (experimental)Abstract:Multi-modal Magnetic Resonance Imaging (MRI) is imperative for accurate brain tumor segmentation, offering indispensable complementary information. Nonetheless, the absence of modalities poses significant challenges in achieving precise segmentation. Recognizing the shared anatomical structures between mono-modal and multi-modal representations, it is noteworthy that mono-modal images typically exhibit limited features in specific regions and tissues. In response to this, we present Anatomical Consistency Distillation and Inconsistency Synthesis (ACDIS), a novel framework designed to transfer anatomical structures from multi-modal to mono-modal representations and synthesize modality-specific features. ACDIS consists of two main components: Anatomical Consistency Distillation (ACD) and Modality Feature Synthesis Block (MFSB). ACD incorporates the Anatomical Feature Enhancement Block (AFEB), meticulously mining anatomical information. Simultaneously, Anatomical Consistency ConsTraints (ACCT) are employed to facilitate the consistent knowledge transfer, i.e., the richness of information and the similarity in anatomical structure, ensuring precise alignment of structural features across mono-modality and multi-modality. Complementarily, MFSB produces modality-specific features to rectify anatomical inconsistencies, thereby compensating for missing information in the segmented features. Through validation on the BraTS2018 and BraTS2020 datasets, ACDIS substantiates its efficacy in the segmentation of brain tumors with missing MRI modalities.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.