Computer Science > Machine Learning
[Submitted on 29 Aug 2024]
Title:OpenFGL: A Comprehensive Benchmarks for Federated Graph Learning
View PDF HTML (experimental)Abstract:Federated graph learning (FGL) has emerged as a promising distributed training paradigm for graph neural networks across multiple local systems without direct data sharing. This approach is particularly beneficial in privacy-sensitive scenarios and offers a new perspective on addressing scalability challenges in large-scale graph learning. Despite the proliferation of FGL, the diverse motivations from practical applications, spanning various research backgrounds and experimental settings, pose a significant challenge to fair evaluation. To fill this gap, we propose OpenFGL, a unified benchmark designed for the primary FGL scenarios: Graph-FL and Subgraph-FL. Specifically, OpenFGL includes 38 graph datasets from 16 application domains, 8 federated data simulation strategies that emphasize graph properties, and 5 graph-based downstream tasks. Additionally, it offers 18 recently proposed SOTA FGL algorithms through a user-friendly API, enabling a thorough comparison and comprehensive evaluation of their effectiveness, robustness, and efficiency. Empirical results demonstrate the ability of FGL while also revealing its potential limitations, offering valuable insights for future exploration in this thriving field.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.