Computer Science > Data Structures and Algorithms
[Submitted on 30 Aug 2024 (v1), last revised 11 Sep 2024 (this version, v3)]
Title:Upward Pointset Embeddings of Planar st-Graphs
View PDFAbstract:We study upward pointset embeddings (UPSEs) of planar $st$-graphs. Let $G$ be a planar $st$-graph and let $S \subset \mathbb{R}^2$ be a pointset with $|S|= |V(G)|$. An UPSE of $G$ on $S$ is an upward planar straight-line drawing of $G$ that maps the vertices of $G$ to the points of $S$. We consider both the problem of testing the existence of an UPSE of $G$ on $S$ (UPSE Testing) and the problem of enumerating all UPSEs of $G$ on $S$. We prove that UPSE Testing is NP-complete even for $st$-graphs that consist of a set of directed $st$-paths sharing only $s$ and $t$. On the other hand, for $n$-vertex planar $st$-graphs whose maximum $st$-cutset has size $k$, we prove that it is possible to solve UPSE Testing in $O(n^{4k})$ time with $O(n^{3k})$ space, and to enumerate all UPSEs of $G$ on $S$ with $O(n)$ worst-case delay, using $O(k n^{4k} \log n)$ space, after $O(k n^{4k} \log n)$ set-up time. Moreover, for an $n$-vertex $st$-graph whose underlying graph is a cycle, we provide a necessary and sufficient condition for the existence of an UPSE on a given poinset, which can be tested in $O(n \log n)$ time. Related to this result, we give an algorithm that, for a set $S$ of $n$ points, enumerates all the non-crossing monotone Hamiltonian cycles on $S$ with $O(n)$ worst-case delay, using $O(n^2)$ space, after $O(n^2)$ set-up time.
Submission history
From: Fabrizio Frati [view email][v1] Fri, 30 Aug 2024 15:58:23 UTC (587 KB)
[v2] Mon, 9 Sep 2024 13:12:07 UTC (598 KB)
[v3] Wed, 11 Sep 2024 19:08:19 UTC (598 KB)
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.