Condensed Matter > Materials Science
[Submitted on 5 Sep 2024 (v1), last revised 8 Sep 2024 (this version, v2)]
Title:SpinMultiNet: Neural Network Potential Incorporating Spin Degrees of Freedom with Multi-Task Learning
View PDF HTML (experimental)Abstract:Neural Network Potentials (NNPs) have attracted significant attention as a method for accelerating density functional theory (DFT) calculations. However, conventional NNP models typically do not incorporate spin degrees of freedom, limiting their applicability to systems where spin states critically influence material properties, such as transition metal oxides. This study introduces SpinMultiNet, a novel NNP model that integrates spin degrees of freedom through multi-task learning. SpinMultiNet achieves accurate predictions without relying on correct spin values obtained from DFT calculations. Instead, it utilizes initial spin estimates as input and leverages multi-task learning to optimize the spin latent representation while maintaining both $E(3)$ and time-reversal equivariance. Validation on a dataset of transition metal oxides demonstrates the high predictive accuracy of SpinMultiNet. The model successfully reproduces the energy ordering of stable spin configurations originating from superexchange interactions and accurately captures the rhombohedral distortion of the rocksalt structure. These results pave the way for new possibilities in materials simulations that consider spin degrees of freedom, promising future applications in large-scale simulations of various material systems, including magnetic materials.
Submission history
From: Koki Ueno [view email][v1] Thu, 5 Sep 2024 05:13:28 UTC (695 KB)
[v2] Sun, 8 Sep 2024 23:58:44 UTC (695 KB)
Current browse context:
cond-mat.mtrl-sci
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.