Computer Science > Machine Learning
[Submitted on 18 Sep 2024]
Title:FedLF: Adaptive Logit Adjustment and Feature Optimization in Federated Long-Tailed Learning
View PDF HTML (experimental)Abstract:Federated learning offers a paradigm to the challenge of preserving privacy in distributed machine learning. However, datasets distributed across each client in the real world are inevitably heterogeneous, and if the datasets can be globally aggregated, they tend to be long-tailed distributed, which greatly affects the performance of the model. The traditional approach to federated learning primarily addresses the heterogeneity of data among clients, yet it fails to address the phenomenon of class-wise bias in global long-tailed data. This results in the trained model focusing on the head classes while neglecting the equally important tail classes. Consequently, it is essential to develop a methodology that considers classes holistically. To address the above problems, we propose a new method FedLF, which introduces three modifications in the local training phase: adaptive logit adjustment, continuous class centred optimization, and feature decorrelation. We compare seven state-of-the-art methods with varying degrees of data heterogeneity and long-tailed distribution. Extensive experiments on benchmark datasets CIFAR-10-LT and CIFAR-100-LT demonstrate that our approach effectively mitigates the problem of model performance degradation due to data heterogeneity and long-tailed distribution. our code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.