Computer Science > Machine Learning
[Submitted on 19 Sep 2024]
Title:Data Poisoning and Leakage Analysis in Federated Learning
View PDFAbstract:Data poisoning and leakage risks impede the massive deployment of federated learning in the real world. This chapter reveals the truths and pitfalls of understanding two dominating threats: {\em training data privacy intrusion} and {\em training data poisoning}. We first investigate training data privacy threat and present our observations on when and how training data may be leaked during the course of federated training. One promising defense strategy is to perturb the raw gradient update by adding some controlled randomized noise prior to sharing during each round of federated learning. We discuss the importance of determining the proper amount of randomized noise and the proper location to add such noise for effective mitigation of gradient leakage threats against training data privacy. Then we will review and compare different training data poisoning threats and analyze why and when such data poisoning induced model Trojan attacks may lead to detrimental damage on the performance of the global model. We will categorize and compare representative poisoning attacks and the effectiveness of their mitigation techniques, delivering an in-depth understanding of the negative impact of data poisoning. Finally, we demonstrate the potential of dynamic model perturbation in simultaneously ensuring privacy protection, poisoning resilience, and model performance. The chapter concludes with a discussion on additional risk factors in federated learning, including the negative impact of skewness, data and algorithmic biases, as well as misinformation in training data. Powered by empirical evidence, our analytical study offers some transformative insights into effective privacy protection and security assurance strategies in attack-resilient federated learning.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.