Computer Science > Computation and Language
[Submitted on 23 Sep 2024]
Title:Enhancing Scientific Reproducibility Through Automated BioCompute Object Creation Using Retrieval-Augmented Generation from Publications
View PDFAbstract:The exponential growth in computational power and accessibility has transformed the complexity and scale of bioinformatics research, necessitating standardized documentation for transparency, reproducibility, and regulatory compliance. The IEEE BioCompute Object (BCO) standard addresses this need but faces adoption challenges due to the overhead of creating compliant documentation, especially for legacy research. This paper presents a novel approach to automate the creation of BCOs from scientific papers using Retrieval-Augmented Generation (RAG) and Large Language Models (LLMs). We describe the development of the BCO assistant tool that leverages RAG to extract relevant information from source papers and associated code repositories, addressing key challenges such as LLM hallucination and long-context understanding. The implementation incorporates optimized retrieval processes, including a two-pass retrieval with re-ranking, and employs carefully engineered prompts for each BCO domain. We discuss the tool's architecture, extensibility, and evaluation methods, including automated and manual assessment approaches. The BCO assistant demonstrates the potential to significantly reduce the time and effort required for retroactive documentation of bioinformatics research while maintaining compliance with the standard. This approach opens avenues for AI-assisted scientific documentation and knowledge extraction from publications thereby enhancing scientific reproducibility. The BCO assistant tool and documentation is available at this https URL.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.