Computer Science > Machine Learning
[Submitted on 23 Sep 2024]
Title:The Number of Trials Matters in Infinite-Horizon General-Utility Markov Decision Processes
View PDF HTML (experimental)Abstract:The general-utility Markov decision processes (GUMDPs) framework generalizes the MDPs framework by considering objective functions that depend on the frequency of visitation of state-action pairs induced by a given policy. In this work, we contribute with the first analysis on the impact of the number of trials, i.e., the number of randomly sampled trajectories, in infinite-horizon GUMDPs. We show that, as opposed to standard MDPs, the number of trials plays a key-role in infinite-horizon GUMDPs and the expected performance of a given policy depends, in general, on the number of trials. We consider both discounted and average GUMDPs, where the objective function depends, respectively, on discounted and average frequencies of visitation of state-action pairs. First, we study policy evaluation under discounted GUMDPs, proving lower and upper bounds on the mismatch between the finite and infinite trials formulations for GUMDPs. Second, we address average GUMDPs, studying how different classes of GUMDPs impact the mismatch between the finite and infinite trials formulations. Third, we provide a set of empirical results to support our claims, highlighting how the number of trajectories and the structure of the underlying GUMDP influence policy evaluation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.