Computer Science > Graphics
[Submitted on 25 Sep 2024]
Title:pyGANDALF -- An open-source, Geometric, ANimation, Directed, Algorithmic, Learning Framework for Computer Graphics
View PDF HTML (experimental)Abstract:In computer graphics (CG) education, the challenge of finding modern, versatile tools is significant, particularly when integrating both legacy and advanced technologies. Traditional frameworks, often reliant on solid, yet outdated APIs like OpenGL, limit the exploration of cutting-edge graphics techniques. To address this, we introduce pyGANDALF, a unique, lightweight, open-source CG framework built on three pillars: Entity-Component-System (ECS) architecture, Python programming, and WebGPU integration. This combination sets pyGANDALF apart by providing a streamlined ECS design with an editor layer, compatibility with WebGPU for state-of-the-art features like compute and ray tracing pipelines, and a programmer-friendly Python environment. The framework supports modern features, such as Physically Based Rendering (PBR) capabilities and integration with Universal Scene Description (USD) formats, making it suitable for both educational demonstrations and real-world applications. Evaluations by expert users confirmed that pyGANDALF effectively balances ease of use with advanced functionality, preparing students for contemporary CG development challenges.
Submission history
From: Manos Kamarianakis [view email][v1] Wed, 25 Sep 2024 08:22:25 UTC (3,587 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.