Computer Science > Cryptography and Security
[Submitted on 27 Sep 2024]
Title:Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection
View PDFAbstract:Network Intrusion Detection Systems (NIDS) are essential for protecting computer networks from malicious activities, including Denial of Service (DoS), Probing, User-to-Root (U2R), and Remote-to-Local (R2L) attacks. Without effective NIDS, networks are vulnerable to significant security breaches and data loss. Machine learning techniques provide a promising approach to enhance NIDS by automating threat detection and improving accuracy. In this research, we propose an Enhanced Convolutional Neural Network (EnCNN) for NIDS and evaluate its performance using the KDDCUP'99 dataset. Our methodology includes comprehensive data preprocessing, exploratory data analysis (EDA), and feature engineering. We compare EnCNN with various machine learning algorithms, including Logistic Regression, Decision Trees, Support Vector Machines (SVM), and ensemble methods like Random Forest, AdaBoost, and Voting Ensemble. The results show that EnCNN significantly improves detection accuracy, with a notable 10% increase over state-of-art approaches. This demonstrates the effectiveness of EnCNN in real-time network intrusion detection, offering a robust solution for identifying and mitigating security threats, and enhancing overall network resilience.
Submission history
From: Ayush Kumar Sharma [view email][v1] Fri, 27 Sep 2024 11:20:20 UTC (463 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.