Quantitative Biology > Neurons and Cognition
[Submitted on 11 Sep 2024]
Title:Brain Network Diffusion-Driven fMRI Connectivity Augmentation for Enhanced Autism Spectrum Disorder Diagnosis
View PDF HTML (experimental)Abstract:Functional magnetic resonance imaging (fMRI) is an emerging neuroimaging modality that is commonly modeled as networks of Regions of Interest (ROIs) and their connections, named functional connectivity, for understanding the brain functions and mental disorders. However, due to the high cost of fMRI data acquisition and labeling, the amount of fMRI data is usually small, which largely limits the performance of recognition models. With the rise of generative models, especially diffusion models, the ability to generate realistic samples close to the real data distribution has been widely used for data augmentations. In this work, we present a transformer-based latent diffusion model for functional connectivity generation and demonstrate the effectiveness of the diffusion model as an augmentation tool for fMRI functional connectivity. Furthermore, extended experiments are conducted to provide detailed analysis of the generation quality and interpretations for the learned feature pattern. Our code will be made public upon acceptance.
Current browse context:
q-bio.NC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.