Computer Science > Data Structures and Algorithms
[Submitted on 30 Sep 2024]
Title:Simple Realizability of Abstract Topological Graphs
View PDF HTML (experimental)Abstract:An abstract topological graph (AT-graph) is a pair $A=(G,\mathcal{X})$, where $G=(V,E)$ is a graph and $\mathcal{X} \subseteq {E \choose 2}$ is a set of pairs of edges of $G$. A realization of $A$ is a drawing $\Gamma_A$ of $G$ in the plane such that any two edges $e_1,e_2$ of $G$ cross in $\Gamma_A$ if and only if $(e_1,e_2) \in \mathcal{X}$; $\Gamma_A$ is simple if any two edges intersect at most once (either at a common endpoint or at a proper crossing). The AT-graph Realizability (ATR) problem asks whether an input AT-graph admits a realization. The version of this problem that requires a simple realization is called Simple AT-graph Realizability (SATR). It is a classical result that both ATR and SATR are NP-complete.
In this paper, we study the SATR problem from a new structural perspective. More precisely, we consider the size $\mathrm{\lambda}(A)$ of the largest connected component of the crossing graph of any realization of $A$, i.e., the graph ${\cal C}(A) = (E, \mathcal{X})$. This parameter represents a natural way to measure the level of interplay among edge crossings. First, we prove that SATR is NP-complete when $\mathrm{\lambda}(A) \geq 6$. On the positive side, we give an optimal linear-time algorithm that solves SATR when $\mathrm{\lambda}(A) \leq 3$ and returns a simple realization if one exists. Our algorithm is based on several ingredients, in particular the reduction to a new embedding problem subject to constraints that require certain pairs of edges to alternate (in the rotation system), and a sequence of transformations that exploit the interplay between alternation constraints and the SPQR-tree and PQ-tree data structures to eventually arrive at a simpler embedding problem that can be solved with standard techniques.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.