Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Oct 2024]
Title:Impact of Regularization on Calibration and Robustness: from the Representation Space Perspective
View PDF HTML (experimental)Abstract:Recent studies have shown that regularization techniques using soft labels, e.g., label smoothing, Mixup, and CutMix, not only enhance image classification accuracy but also improve model calibration and robustness against adversarial attacks. However, the underlying mechanisms of such improvements remain underexplored. In this paper, we offer a novel explanation from the perspective of the representation space (i.e., the space of the features obtained at the penultimate layer). Our investigation first reveals that the decision regions in the representation space form cone-like shapes around the origin after training regardless of the presence of regularization. However, applying regularization causes changes in the distribution of features (or representation vectors). The magnitudes of the representation vectors are reduced and subsequently the cosine similarities between the representation vectors and the class centers (minimal loss points for each class) become higher, which acts as a central mechanism inducing improved calibration and robustness. Our findings provide new insights into the characteristics of the high-dimensional representation space in relation to training and regularization using soft labels.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.