Computer Science > Robotics
[Submitted on 5 Oct 2024]
Title:A Framework for Reproducible Benchmarking and Performance Diagnosis of SLAM Systems
View PDF HTML (experimental)Abstract:We propose SLAMFuse, an open-source SLAM benchmarking framework that provides consistent crossplatform environments for evaluating multi-modal SLAM algorithms, along with tools for data fuzzing, failure detection, and diagnosis across different datasets. Our framework introduces a fuzzing mechanism to test the resilience of SLAM algorithms against dataset perturbations. This enables the assessment of pose estimation accuracy under varying conditions and identifies critical perturbation thresholds. SLAMFuse improves diagnostics with failure detection and analysis tools, examining algorithm behaviour against dataset characteristics. SLAMFuse uses Docker to ensure reproducible testing conditions across diverse datasets and systems by streamlining dependency management. Emphasizing the importance of reproducibility and introducing advanced tools for algorithm evaluation and performance diagnosis, our work sets a new precedent for reliable benchmarking of SLAM systems. We provide ready-to-use docker compatible versions of the algorithms and datasets used in the experiments, together with guidelines for integrating and benchmarking new algorithms. Code is available at this https URL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.