Computer Science > Cryptography and Security
[Submitted on 4 Oct 2024]
Title:Cyber Risk Taxonomies: Statistical Analysis of Cybersecurity Risk Classifications
View PDF HTML (experimental)Abstract:Cyber risk classifications are widely used in the modeling of cyber event distributions, yet their effectiveness in out of sample forecasting performance remains underexplored. In this paper, we analyse the most commonly used classifications and argue in favour of switching the attention from goodness-of-fit and in-sample predictive performance, to focusing on the out-of sample forecasting performance. We use a rolling window analysis, to compare cyber risk distribution forecasts via threshold weighted scoring functions. Our results indicate that business motivated cyber risk classifications appear to be too restrictive and not flexible enough to capture the heterogeneity of cyber risk events. We investigate how dynamic and impact-based cyber risk classifiers seem to be better suited in forecasting future cyber risk losses than the other considered classifications. These findings suggest that cyber risk types provide limited forecasting ability concerning cyber event severity distribution, and cyber insurance ratemakers should utilize cyber risk types only when modeling the cyber event frequency distribution. Our study offers valuable insights for decision-makers and policymakers alike, contributing to the advancement of scientific knowledge in the field of cyber risk management.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.