Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Oct 2024 (v1), last revised 18 Dec 2024 (this version, v2)]
Title:ZipVL: Efficient Large Vision-Language Models with Dynamic Token Sparsification
View PDF HTML (experimental)Abstract:The efficiency of large vision-language models (LVLMs) is constrained by the computational bottleneck of the attention mechanism during the prefill phase and the memory bottleneck of fetching the key-value (KV) cache in the decoding phase, particularly in scenarios involving high-resolution images or videos. Visual content often exhibits substantial redundancy, resulting in highly sparse attention maps within LVLMs. This sparsity can be leveraged to accelerate attention computation or compress the KV cache through various approaches. However, most studies focus on addressing only one of these bottlenecks and do not adequately support dynamic adjustment of sparsity concerning distinct layers or tasks. In this paper, we present ZipVL, an efficient inference framework designed for LVLMs through a dynamic ratio allocation strategy of important tokens. This ratio is adaptively determined based on the layer-specific distribution of attention scores, rather than fixed hyper-parameters, thereby improving efficiency for less complex tasks while maintaining high performance for more challenging ones. Then we select important tokens based on their normalized attention scores and perform sparse attention mechanism solely on those important tokens, reducing the latency in the prefill phase. Tokens deemed less important will be discarded to reduce KV cache size, alleviating the memory bottleneck in the decoding phase. Our experiments demonstrate that ZipVL can accelerate the prefill phase by 2.3$\times$ and improve decoding throughput by 2.8$\times$, with a minimal accuracy reduction of only 0.5\% on VQAv2 benchmark over LLaVA-Next-13B model, effectively enhancing the generation efficiency of LVLMs.
Submission history
From: Yefei He [view email][v1] Fri, 11 Oct 2024 07:24:21 UTC (324 KB)
[v2] Wed, 18 Dec 2024 07:45:11 UTC (293 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.