Computer Science > Machine Learning
[Submitted on 15 Oct 2024]
Title:Transfer Learning with Foundational Models for Time Series Forecasting using Low-Rank Adaptations
View PDF HTML (experimental)Abstract:High computational power and the availability of large datasets have supported the development of Foundational Models. They are a new emerging technique widely used in Generative Artificial Intelligence, characterized by their scalability and their use in Transfer Learning. The enormous and heterogeneous amounts of data used in their initial training phase, known as pre-training, give them a higher generalization capacity than any other specific model, constituting a solid base that can be adapted or adjusted to a wide range of tasks, increasing their applicability. This study proposes LLIAM, the Llama Lora-Integrated Autorregresive Model. Low-Rank Adaptations are used to enhance the knowledge of the model with diverse time series datasets, known as the fine-tuning phase. To illustrate the capabilities of our proposal, two sets of experiments have been carried out that obtained favorable and promising results with lower training times than other Deep Learning approaches. With this work, we also encourage the use of available resources (such as these pre-trained models) to avoid unnecessary and costly training, narrowing the gap between the goals of traditional Artificial Intelligence and those specified by the definition of Green Artificial Intelligence.
Submission history
From: Manuel Germán-Morales [view email][v1] Tue, 15 Oct 2024 12:14:01 UTC (604 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.