Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Oct 2024]
Title:Optimizing 3D Geometry Reconstruction from Implicit Neural Representations
View PDF HTML (experimental)Abstract:Implicit neural representations have emerged as a powerful tool in learning 3D geometry, offering unparalleled advantages over conventional representations like mesh-based methods. A common type of INR implicitly encodes a shape's boundary as the zero-level set of the learned continuous function and learns a mapping from a low-dimensional latent space to the space of all possible shapes represented by its signed distance function. However, most INRs struggle to retain high-frequency details, which are crucial for accurate geometric depiction, and they are computationally expensive. To address these limitations, we present a novel approach that both reduces computational expenses and enhances the capture of fine details. Our method integrates periodic activation functions, positional encodings, and normals into the neural network architecture. This integration significantly enhances the model's ability to learn the entire space of 3D shapes while preserving intricate details and sharp features, areas where conventional representations often fall short.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.