Computer Science > Machine Learning
[Submitted on 17 Oct 2024]
Title:Trojan Prompt Attacks on Graph Neural Networks
View PDF HTML (experimental)Abstract:Graph Prompt Learning (GPL) has been introduced as a promising approach that uses prompts to adapt pre-trained GNN models to specific downstream tasks without requiring fine-tuning of the entire model. Despite the advantages of GPL, little attention has been given to its vulnerability to backdoor attacks, where an adversary can manipulate the model's behavior by embedding hidden triggers. Existing graph backdoor attacks rely on modifying model parameters during training, but this approach is impractical in GPL as GNN encoder parameters are frozen after pre-training. Moreover, downstream users may fine-tune their own task models on clean datasets, further complicating the attack. In this paper, we propose TGPA, a backdoor attack framework designed specifically for GPL. TGPA injects backdoors into graph prompts without modifying pre-trained GNN encoders and ensures high attack success rates and clean accuracy. To address the challenge of model fine-tuning by users, we introduce a finetuning-resistant poisoning approach that maintains the effectiveness of the backdoor even after downstream model adjustments. Extensive experiments on multiple datasets under various settings demonstrate the effectiveness of TGPA in compromising GPL models with fixed GNN encoders.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.