Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 18 Oct 2024 (v1), last revised 31 Oct 2024 (this version, v2)]
Title:TF-DDRL: A Transformer-enhanced Distributed DRL Technique for Scheduling IoT Applications in Edge and Cloud Computing Environments
View PDF HTML (experimental)Abstract:With the continuous increase of IoT applications, their effective scheduling in edge and cloud computing has become a critical challenge. The inherent dynamism and stochastic characteristics of edge and cloud computing, along with IoT applications, necessitate solutions that are highly adaptive. Currently, several centralized Deep Reinforcement Learning (DRL) techniques are adapted to address the scheduling problem. However, they require a large amount of experience and training time to reach a suitable solution. Moreover, many IoT applications contain multiple interdependent tasks, imposing additional constraints on the scheduling problem. To overcome these challenges, we propose a Transformer-enhanced Distributed DRL scheduling technique, called TF-DDRL, to adaptively schedule heterogeneous IoT applications. This technique follows the Actor-Critic architecture, scales efficiently to multiple distributed servers, and employs an off-policy correction method to stabilize the training process. In addition, Prioritized Experience Replay (PER) and Transformer techniques are introduced to reduce exploration costs and capture long-term dependencies for faster convergence. Extensive results of practical experiments show that TF-DDRL, compared to its counterparts, significantly reduces response time, energy consumption, monetary cost, and weighted cost by up to 60%, 51%, 56%, and 58%, respectively.
Submission history
From: Zhiyu Wang [view email][v1] Fri, 18 Oct 2024 10:01:05 UTC (5,794 KB)
[v2] Thu, 31 Oct 2024 10:48:19 UTC (5,794 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.