Computer Science > Networking and Internet Architecture
[Submitted on 29 Oct 2024]
Title:Energy-Aware Multi-Agent Reinforcement Learning for Collaborative Execution in Mission-Oriented Drone Networks
View PDF HTML (experimental)Abstract:Mission-oriented drone networks have been widely used for structural inspection, disaster monitoring, border surveillance, etc. Due to the limited battery capacity of drones, mission execution strategy impacts network performance and mission completion. However, collaborative execution is a challenging problem for drones in such a dynamic environment as it also involves efficient trajectory design. We leverage multi-agent reinforcement learning (MARL) to manage the challenge in this study, letting each drone learn to collaboratively execute tasks and plan trajectories based on its current status and environment. Simulation results show that the proposed collaborative execution model can successfully complete the mission at least 80% of the time, regardless of task locations and lengths, and can even achieve a 100% success rate when the task density is not way too sparse. To the best of our knowledge, our work is one of the pioneer studies on leveraging MARL on collaborative execution for mission-oriented drone networks; the unique value of this work lies in drone battery level driving our model design.
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.