Computer Science > Computation and Language
[Submitted on 6 Dec 2024]
Title:ConQRet: Benchmarking Fine-Grained Evaluation of Retrieval Augmented Argumentation with LLM Judges
View PDF HTML (experimental)Abstract:Computational argumentation, which involves generating answers or summaries for controversial topics like abortion bans and vaccination, has become increasingly important in today's polarized environment. Sophisticated LLM capabilities offer the potential to provide nuanced, evidence-based answers to such questions through Retrieval-Augmented Argumentation (RAArg), leveraging real-world evidence for high-quality, grounded arguments. However, evaluating RAArg remains challenging, as human evaluation is costly and difficult for complex, lengthy answers on complicated topics. At the same time, re-using existing argumentation datasets is no longer sufficient, as they lack long, complex arguments and realistic evidence from potentially misleading sources, limiting holistic evaluation of retrieval effectiveness and argument quality. To address these gaps, we investigate automated evaluation methods using multiple fine-grained LLM judges, providing better and more interpretable assessments than traditional single-score metrics and even previously reported human crowdsourcing. To validate the proposed techniques, we introduce ConQRet, a new benchmark featuring long and complex human-authored arguments on debated topics, grounded in real-world websites, allowing an exhaustive evaluation across retrieval effectiveness, argument quality, and groundedness. We validate our LLM Judges on a prior dataset and the new ConQRet benchmark. Our proposed LLM Judges and the ConQRet benchmark can enable rapid progress in computational argumentation and can be naturally extended to other complex retrieval-augmented generation tasks.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.