PDF
Discussiones Mathematicae Graph Theory 32(1) (2012)
81-90
DOI: https://doi.org/10.7151/dmgt.1587
Recognizable Colorings of Cycles and Trees
Michael J. Dorfling
Department of Mathematics | Samantha Dorfling
Department of Mathematics and Applied Mathematics |
Abstract
For a graph G and a vertex-coloring c:V(G)→{1,2, …,k}, the color code of a vertex v is the (k+1)-tuple (a0,a1, …,ak), where a0 = c(v), and for 1 ≤ i ≤ k, ai is the number of neighbors of v colored i. A recognizable coloring is a coloring such that distinct vertices have distinct color codes. The recognition number of a graph is the minimum k for which G has a recognizable k-coloring. In this paper we prove three conjectures of Chartrand et al. in [8] regarding the recognition number of cycles and trees.
Keywords: recognizable coloring, recognition number
2010 Mathematics Subject Classification: 05C15, 05C70.
References
[1] | M. Aigner and E. Triesch, Irregular assignments and two problems á la Ringel, in: Topics in Combinatorics and Graph Theory, R. Bodendiek and R. Henn, eds. (Physica, Heidelberg, 1990) 29--36. |
[2] | M. Aigner, E. Triesch and Z. Tuza, Irregular assignments and vertex-distinguishing edge-colorings of graphs, Combinatorics' 90 (Elsevier Science Pub., New York, 1992) 1--9. |
[3] | A.C. Burris, On graphs with irregular coloring number 2, Congr. Numer. 100 (1994) 129--140. |
[4] | A.C. Burris, The irregular coloring number of a tree, Discrete Math. 141 (1995) 279--283, doi: 10.1016/0012-365X(93)E0225-S. |
[5] | G. Chartrand, H. Escuadro, F. Okamoto and P. Zhang, Detectable colorings of graphs, Util. Math. 69 (2006) 13--32. |
[6] | G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congress. Numer. 64 (1988) 197--210. |
[7] | G. Chartrand and L. Lesniak, Graphs & Digraphs: Fourth Edition (Chapman & Hall/CRC, Boca Raton, FL, 2005). |
[8] | G. Chartrand, L. Lesniak, D.W. VanderJagt and P. Zhang, Recognizable colorings of graphs, Discuss. Math. Graph Theory 28 (2008) 35--57, doi: 10.7151/dmgt.1390. |
[9] | F. Harary and M. Plantholt, The point-distinguishing chromatic index, in: Graphs and Applications (Wiley, New York, 1985) 147--162. |
Received 16 July 2010
Revised 25 January 2011
Accepted 25 January 2011
Close