DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

D.A. Mojdeh

Doost Ali Mojdeh

Department of Mathematics, University of Mazandaran
Babolsar, Iran

email: [email protected]

0000-0001-9373-3390

B. Samadi

Babak Samadi

Department of Mathematics, University of Mazandaran
Babolsar, Iran

email: [email protected]

I.G. Yero

Ismael G. Yero

Departamento de Matemáticas, Universidad de Cádiz
Algeciras, Spain

email: [email protected]

0000-0002-1619-1572

Title:

Further results on packing related parameters in graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 42(2) (2022) 333-348

Received: 2018-11-19 , Revised: 2019-08-28 , Accepted: 2019-10-17 , Available online: 2019-11-26 , https://doi.org/10.7151/dmgt.2262

Abstract:

Given a graph $G=(V,E)$, a set $B\subseteq V(G)$ is a packing in $G$ if the closed neighborhoods of every pair of distinct vertices in $B$ are pairwise disjoint. The packing number $\rho(G)$ of $G$ is the maximum cardinality of a packing in $G$. Similarly, open packing sets and open packing number are defined for a graph $G$ by using open neighborhoods instead of closed ones. We give several results concerning the (open) packing number of graphs in this paper. For instance, several bounds on these packing parameters along with some Nordhaus-Gaddum inequalities are given. We characterize all graphs with equal packing and independence numbers and give the characterization of all graphs for which the packing number is equal to the independence number minus one. In addition, due to the close connection between the open packing and total domination numbers, we prove a new upper bound on the total domination number $\gamma_{t}(T)$ for a tree $T$ of order $n\geq 2$ improving the upper bound $\gamma_{t}(T)\leq(n+s)/2$ given by Chellali and Haynes in 2004, in which $s$ is the number of support vertices of $T$.

Keywords:

packing number, open packing number, independence number, Nordhaus-Gaddum inequality, total domination number

References:

  1. M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Appl. Math. 161 (2013) 466–546.
    https://doi.org/10.1016/j.dam.2011.12.018
  2. M. Borowiecki, On a minimaximal kernel of trees, Discuss. Math. 1 (1975) 3–6.
  3. M. Chellali and T.W. Haynes, A note on the total domination number of a tree, J. Combin. Math. Combin. Comput. 58 (2006) 189–193.
  4. M. Chellali and T.W. Haynes, Total and paired-domination numbers of a tree, AKCE Int. J. Graphs Comb. 1 (2004) 69–75.
  5. E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211–219.
    https://doi.org/10.1002/net.3230100304
  6. E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22.
    https://doi.org/10.1016/j.disc.2003.06.004
  7. W.J. Desormeaux and M.A. Henning, A new lower bound on the total domination number of a tree, Ars Combin. 138 (2018) 305–322.
  8. R. Gallant, G. Gunther, B.L. Hartnell and D.F. Rall, Limited packing in graphs, Discrete Appl. Math. 158 (2010) 1357–1364.
    https://doi.org/10.1016/j.dam.2009.04.014
  9. M. Gentner and D. Rautenbach, Some comments on the Slater number, Discrete Math. 340 (2017) 1497–1502.
    https://doi.org/10.1016/j.disc.2017.02.009
  10. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
  11. M.A. Henning and P.J. Slater, Open packing in graphs, J. Combin. Math. Combin. Comput. 28 (1999) 5–18.
  12. M.A. Henning and A. Yeo, Total Domination in Graphs (Springer-Verlag, New York, 2013).
    https://doi.org/10.1007/978-1-4614-6525-6
  13. C.X. Kang, On domination number and distance in graphs, Discrete Appl. Math. 200 (2016) 203–206.
    https://doi.org/10.1016/j.dam.2015.07.009
  14. A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific. J. Math. 61 (1975) 225–233.
    https://doi.org/10.2140/pjm.1975.61.225
  15. D.A. Mojdeh and B. Samadi, Packing parameters in graphs: new bounds and a solution to an open problem, J. Comb. Optim. 38 (2019) 739–747.
    https://doi.org/10.1007/s10878-019-00410-4
  16. E.A. Nordhaus and J. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175–177.
    https://doi.org/10.2307/2306658
  17. O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ. 38, American Mathematical Society, Providence, RI, 1962).
    https://doi.org/10.1090/coll/038
  18. I. Sahul Hamid and S. Saravanakumar, Packing parameters in graphs, Discuss. Math. Graph Theory 35 (2015) 5–16.
    https://doi.org/10.7151/dmgt.1775
  19. I. Sahul Hamid and S. Saravanakumar, On open packing number of graphs, Iran. J. Math. Sci. Inform. 12 (2017) 107–117.
  20. D.F. Rall, Total domination in categorical products of graphs, Discuss. Math. Graph Theory 25 (2005) 35–44.
    https://doi.org/10.7151/dmgt.1257
  21. B. Samadi, On the $k$-limited packing numbers in graphs, Discrete Optim. 22 (2016) 270–276.
    https://doi.org/10.1016/j.disopt.2016.08.002
  22. I. Stewart, Defend the Roman Empire!, Sci. Amer. 281 (1999) 136–138.
    https://doi.org/10.1038/scientificamerican1299-136
  23. D.B. West, Introduction to Graph Theory, Second Edition (Prentice Hall, USA, 2001).

Close