Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles
Abstract
:1. Introduction
2. Optical Trapping Techniques
2.1. Optical Trapping via the Radiative Pressure Force (Laser Tweezers)
2.2. Optical Trapping via the Photophoretic Force
2.3. Alternate Trapping Modalities
2.4. Trapping both Transparent and Absorbing Particles in Air Using a Single Shaped Laser Beam
3. Laser Trapping Raman Spectroscopy (LTRS)
3.1. Development of LTRS
3.2. LTRS Studies on Blood Cells
3.3. LTRS Studies of Yeast Cells
3.4. LTRS Studies on Biological and Bacterial Spores
3.5. LTRS Used for Drug Discovery and Evaluation
3.6. LTRS Studies on Airborne Bioaerosols
3.7. LTRS in Microfluidics and in Air for Continuously Sampling Bioaerosol Particles
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Camp, C.H., Jr.; Cicerone, M.T. Chemically sensitive bioimaging with coherent Raman scattering. Nat. Photonics 2015, 9, 295–305. [Google Scholar] [CrossRef]
- Chan, J.W. Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells. J. Biophoton. 2013, 6, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Puppels, G.J.; de Mul, F.F.; Otto, C.; Greve, J.; Robert-Nicoud, M.; Arndt-Jovin, D.J.; Jovin, T.M. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 1990, 347, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Thurn, R.; Kiefer, W. Raman-Microsampling Technique Applying Optical Levitation by Radiation Pressure. Appl. Spectrosc. 1984, 38, 78–83. [Google Scholar] [CrossRef]
- Xie, C.; Li, Y.Q.; Tang, W.; Newton, R.J. Study of dynamical process of heat denaturation in optically trapped single microorganisms by near-infrared Raman spectroscopy. J. Appl. Phys. 2003, 94, 6138–6142. [Google Scholar] [CrossRef]
- Shao, J.; Yao, H.; Meng, L.; Li, Y.; Lin, M.; Li, X.; Liu, J.; Liang, J. Raman spectroscopy of circulating single red blood cells in microvessels in vivo. Vib. Spectrosc. 2012, 63, 367–370. [Google Scholar] [CrossRef]
- Fu, D.; Zhou, J.; Zhu, W.S.; Manley, P.W.; Wang, Y.K.; Hood, T.; Wylie, A.; Xie, X.S. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat. Chem. 2014, 6, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Moritz, T.J.; Taylor, D.S.; Krol, D.M.; Fritch, J.; Chan, J.W. Detection of doxorubicin-induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy. Biomed. Opt. Express 2010, 1, 1138–1147. [Google Scholar] [CrossRef] [PubMed]
- Li, T. Fundamental Tests of Physics with Optically Trapped Microspheres; Springer Theses: New York, NY, USA, 2013. [Google Scholar]
- Wills, J.B.; Knox, K.J.; Reid, J.P. Optical control and characterisation of aerosol. Chem. Phys. Lett. 2009, 481, 153–165. [Google Scholar] [CrossRef]
- Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 1970, 24, 156–159. [Google Scholar] [CrossRef]
- Lewittes, M.; Arnold, S.; Oster, G. Radiometric levitation of micron sized spheres Radiometric levitation of micron sized spheres. Appl. Phys. Lett. 1982, 40, 455–457. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M. Optical levitation by radiation pressure. Appl. Phys. Lett. 1971, 19, 283–285. [Google Scholar] [CrossRef]
- Roosen, G.; Imbert, C. Optical levitation by means of two horizontal laser beams: A theoretical and experimental study. Phys. Lett. A 1976, 59, 6–8. [Google Scholar] [CrossRef]
- Omori, R.; Kobayashi, T.; Suzuki, A. Observation of a single-beam gradient-force optical trap for dielectric particles in air. Opt. Lett. 1997, 22, 816–818. [Google Scholar] [CrossRef] [PubMed]
- Neuman, K.C.; Block, S.M. Optical trapping. Rev. Sci. Instrum. 2004, 75, 2787–2809. [Google Scholar] [CrossRef] [PubMed]
- Burnham, D.R.; McGloin, D. Modeling of optical traps for aerosols. J. Opt. Soc. Am. B 2011, 28, 2856–2864. [Google Scholar] [CrossRef]
- Agate, B.; Brown, C.; Sibbett, W.; Dholakia, K. Femtosecond optical tweezers for in-situ control of two-photon fluorescence. Opt. Express 2004, 12, 3011–3017. [Google Scholar] [CrossRef] [PubMed]
- Gahagan, K.T.; Swartzlander, G. A Optical vortex trapping of particles. Opt. Lett. 1996, 21, 827–829. [Google Scholar] [CrossRef] [PubMed]
- Desyatnikov, A.S.; Shvedov, V.G.; Rode, A.V.; Krolikowski, W.; Kivshar, Y.S. Photophoretic manipulation of absorbing aerosol particles with vortex beams: Theory versus experiment. Opt. Express 2009, 17, 8201–8211. [Google Scholar] [CrossRef] [PubMed]
- Shvedov, V.G.; Desyatnikov, A.S.; Rode, A.V.; Krolikowski, W.; Kivshar, Y.S. Optical guiding of absorbing nanoclusters in air. Opt. Express 2009, 17, 5743–5757. [Google Scholar] [CrossRef] [PubMed]
- Shvedov, V.; Davoyan, A.R.; Hnatovsky, C.; Engheta, N.; Krolikowski, W. A long-range polarization-controlled optical tractor beam. Nat. Photonics 2014, 8, 846–850. [Google Scholar] [CrossRef]
- Wang, C.; Pan, Y.; Hill, S.C.; Redding, B. Photophoretic trapping-Raman spectroscopy for single pollens and fungal spores trapped in air. J. Quant. Spectrosc. Radiat. Transf. 2015, 153, 4–12. [Google Scholar] [CrossRef]
- Pan, Y.L.; Wang, C.; Hill, S.C.; Coleman, M.; Beresnev, L.A.; Santarpia, J.L. Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis. Appl. Phys. Lett. 2014, 104, 113507. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Z.; Wei, Y.; Zhang, Q.; Cheng, T.; Wu, X. Photophoretic trapping of multiple particles in tapered-ring optical field. Opt. Express 2014, 22, 23716–23723. [Google Scholar] [CrossRef] [PubMed]
- Shvedov, V.G.; Hnatovsky, C.; Shostka, N.; Rode, A.V.; Krolikowski, W. Optical manipulation of particle ensembles in air. Opt. Lett. 2012, 37, 1934–1936. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, Z.; Prakash, J.; Huang, S.; Hernandez, D.; Salazar, M.; Christodoulides, D.N.; Chen, Z. Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques. Opt. Lett. 2011, 36, 1491–1493. [Google Scholar] [CrossRef] [PubMed]
- Shvedov, V.G.; Rode, A.V; Izdebskaya, Y.V.; Desyatnikov, A.S.; Krolikowski, W.; Kivshar, Y.S. Selective trapping of multiple particles by volume speckle field. Opt. Express 2010, 18, 3137–3142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cannan, D.; Liu, J.; Zhang, P.; Christodoulides, D.N.; Chen, Z. Observation of trapping and transporting air-borne absorbing particles with a single optical beam. Opt. Express 2012, 20, 16212–16217. [Google Scholar] [CrossRef]
- Lin, J.; Li, Y. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam. Appl. Phys. Lett. 2014, 104, 101909. [Google Scholar] [CrossRef]
- Rohatschek, H. Direction Magnitude and Causes of Photoporetic Forces. J. Aerosol Sci. 1985, 16, 29–42. [Google Scholar] [CrossRef]
- Rohatschek, H. Semi-empirical model of photophoretic forces for the entire range of pressures. J. Aerosol Sci. 1995, 26, 717–734. [Google Scholar] [CrossRef]
- Jovanovic, O. Photophoresis—Light induced motion of particles suspended in gas. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 889–901. [Google Scholar] [CrossRef]
- Redding, B.; Hill, S.C.; Alexson, D.; Wang, C.; Pan, Y. Photophoretic trapping of airborne particles using ultraviolet illumination. Opt. Express 2015, 23, 3630–3639. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Hart, A.G.; Li, Y. Optical pulling of airborne absorbing particles and smut spores over a meter-scale distance with negative photophoretic force. Appl. Phys. Lett. 2015, 106, 171906. [Google Scholar] [CrossRef]
- Dufresne, E.R.; Spalding, G.C.; Dearing, M.T.; Sheets, S.A.; Grier, D.G. Computer-generated holographic optical tweezer arrays. Rev. Sci. Instrum. 2001, 72, 1810–1816. [Google Scholar] [CrossRef]
- Dufresne, E.R.; Grier, D.G. Optical tweezer arrays and optical substrates created with diffractive optics. Rev. Sci. Instrum. 1998, 69, 1974–1977. [Google Scholar] [CrossRef]
- Melville, H.; Milne, G.; Spalding, G.; Sibbett, W.; Dholakia, K.; McGloin, D. Optical trapping of three-dimensional structures using dynamic holograms. Opt. Express 2003, 11, 3562–3567. [Google Scholar] [CrossRef] [PubMed]
- Emiliani, V.; Cojoc, D.; Ferrari, E.; Garbin, V.; Durieux, C.; Coppey-Moisan, M.; di Fabrizio, E. Wave front engineering for microscopy of living cells. Opt. Express 2005, 13, 1395–1405. [Google Scholar] [CrossRef] [PubMed]
- Burnham, D.R.; McGloin, D. Holographic optical trapping of aerosol droplets. Opt. Express 2006, 14, 4175–4181. [Google Scholar] [CrossRef] [PubMed]
- Jess, P.R.T.; Garcés-Chávez, V.; Smith, D.; Mazilu, M.; Paterson, L.; Riches, A.; Herrington, C.S.; Sibbett, W.; Dholakia, K. Dual beam fibre trap for Raman micro-spectroscopy of single cells. Opt. Express 2006, 14, 5779–5791. [Google Scholar] [CrossRef] [PubMed]
- Čižmár, T.; Dholakia, K. Shaping the light transmission through a multimode optical fibre: Complex transformation analysis and applications in biophotonics. Opt. Express 2011, 19, 18871–18884. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, S.; Di Leonardo, R. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab Chip 2012, 12, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Redding, B.; Pan, Y.L. Optical trap for both transparent and absorbing particles in air using a single shaped laser beam. Opt. Lett. 2015, 40, 2798–2801. [Google Scholar] [CrossRef] [PubMed]
- Dear, R.D.; Burnham, D.R.; Summers, M.D.; McGloin, D.; Ritchie, G.A.D. Single aerosol trapping with an annular beam: Improved particle localisation. Phys. Chem. Chem. Phys. 2012, 14, 15826–15831. [Google Scholar] [CrossRef] [PubMed]
- Beams, J.W. Production and use of high centrifugal fields. Science 1954, 120, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Wuerker, R.F.; Shelton, H.; Langmuir, R.V. Electrodynamic containment of charged particles. J. Appl. Phys. 1959, 30, 342–349. [Google Scholar] [CrossRef]
- Wu, J.; Du, G. Acoustic radiation force on a small compressible sphere in focused beam. J. Acoust. Soc. Am. 1990, 87, 997–1003. [Google Scholar] [CrossRef]
- Knoll, P.; Marchl, M.; Kiefer, W. Raman Spectroscopy of Microparticles in Laser Light Traps. Indian J. Pure Appl. Phys. 1988, 26, 268–277. [Google Scholar]
- Lankers, M.; Popp, J.; Kiefer, W. Raman and fluorescence spectra of single optically trapped microdroplets in emulsions. Appl. Spectrosc. 1994, 48, 1166–1168. [Google Scholar] [CrossRef]
- Ajito, K. Combined Near-Infrared Raman Microprobe and Laser Trapping System: Application to the Analysis of a Single Organic Microdroplet in Water. Appl. Spectrosc. 1998, 52, 339–342. [Google Scholar] [CrossRef]
- Ajito, K.; Morita, M.; Torimitsu, K. Investigation of the molecular extraction process in single subpicoliter droplets using a near-infrared laser Raman trapping system. Anal. Chem. 2000, 72, 4721–4725. [Google Scholar] [CrossRef] [PubMed]
- Ajito, K.; Torimitsu, K. Laser trapping and Raman spectroscopy of single cellular organelles in the nanometer range. Lab Chip 2002, 2, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Dinno, M.A.; Li, Y.Q. Near-infrared Raman spectroscopy of single optically trapped biological cells. Opt. Lett. 2002, 27, 249–251. [Google Scholar] [CrossRef] [PubMed]
- Alexander, T.A.; Pellegrino, P.; Gillespie, J.B. Near-infrared Surface-Enhanced-Raman-Scattering (SERS) mediated detection of single, optically trapped, bacterial spores. Appl. Spectrosc. 2003, 57, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Goodman, C.; Dinno, M.; Li, Y.Q. Real-time Raman spectroscopy of optically trapped living cells and organelles. Opt. Express 2004, 12, 6208–6214. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Zhang, P.; Yu, J.; Setlow, P.; Li, Y.Q. Rapid confocal Raman imaging using a synchro multifoci-scan scheme for dynamic monitoring of single living cells. Appl. Phys. Lett. 2011, 98, 4–7. [Google Scholar] [CrossRef]
- Pan, Y.L.; Hill, S.C.; Coleman, M. Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra. Opt. Express 2012, 20, 5325–5334. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Shelenkova, L.; Li, Y.; Kempf, C.R.; Sabelnikov, A. Laser tweezers Raman spectroscopy potential for studies of complex dynamic cellular processes: Single cell bacterial analysis. Anal. Chem. 2009, 81, 3227–3238. [Google Scholar] [CrossRef] [PubMed]
- Houlne, M.P.; Sjostrom, C.M.; Uibel, R.H.; Kleimeyer, J.A.; Harris, J.M. Confocal Raman microscopy for monitoring chemical reactions on single optically trapped, solid-phase support particles. Anal. Chem. 2002, 74, 4311–4319. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Chen, D.; Setlow, P.; Li, Y.Q. Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics. Anal. Chem. 2009, 81, 4035–4042. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Zhang, P.; Setlow, P.; Li, Y.Q. Characterization of bacterial spore germination using integrated phase contrast microscopy, Raman spectroscopy, and optical tweezers. Anal. Chem. 2010, 82, 3840–3847. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, R.P.; Lee, T.; Bertness, K.A.; Smalyukh, I.I. Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy. Opt. Express 2010, 18, 27658–27669. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.R.; Wills, J.B.; Mitchem, L.; Burnham, D.R.; McGloin, D.; Reid, J.P. Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets. Lab Chip 2009, 9, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Bálint, S.; Cossins, B.; Guallar, V.; Petrov, D. Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers. Biophys. J. 2009, 96, 209–216. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.C.; Rusciano, G.; Ciancia, R.; Martinelli, V.; Pesce, G.; Rotoli, B.; Selvaggi, L.; Sasso, A. Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers. Opt. Express 2008, 16, 7943–7957. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, R.; Verma, R.S.; Ahlawat, S.; Uppal, A.; Gupta, P.K. Studies on erythrocytes in malaria infected blood sample with Raman optical tweezers. J. Biomed. Opt. 2011, 16, 077009. [Google Scholar] [CrossRef] [PubMed]
- Zachariah, E.; Bankapur, A.; Santhosh, C.; Valiathan, M.; Mathur, D. Probing oxidative stress in single erythrocytes with Raman Tweezers. J. Photochem. Photobiol. B Biol. 2010, 100, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Bankapur, A.; Barkur, S.; Chidangil, S.; Mathur, D. A micro-raman study of live, single Red Blood Cells (RBCs) treated with AgNO3 nanoparticles. PLoS ONE 2014, 97, e103493. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.T.; Lin, H.L.; Chen, H.C.; Wu, Y.M.; Chen, W.J.; Lee, Y.T.; Liau, I. Real-time molecular assessment on oxidative injury of single cells using Raman spectroscopy. J. Raman Spectrosc. 2009, 40, 1194–1199. [Google Scholar] [CrossRef]
- Chen, D.; Huang, S.S.; Li, Y.Q. Real-time detection of kinetic germination and heterogeneity of single Bacillus spores by laser tweezers Raman spectroscopy. Anal. Chem. 2006, 78, 6936–6941. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Dong, Z.; Setlow, P.; Li, Y.Q. Kinetics of Germination of Individual Spores of Geobacillus stearothermophilus as Measured by Raman Spectroscopy and Differential Interference Contrast Microscopy. PLoS ONE 2013, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.W.; Esposito, A.P.; Talley, C.E.; Hollars, C.W.; Lane, S.M.; Huser, T. Reagentless Identification of Single Bacterial Spores in Aqueous Solution by Confocal Laser Tweezers Raman Spectroscopy. Anal. Chem. 2004, 76, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Schie, I.W.; Alber, L.; Gryshuk, A.L.; Chan, J.W. Investigating drug induced changes in single, living lymphocytes based on Raman micro-spectroscopy. Analyst 2014, 2726, 2726–2733. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Qin, Y.; Zheng, F.; Sun, M.; Shi, D. Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells. Opt. Lett. 2006, 31, 2015–2017. [Google Scholar] [CrossRef] [PubMed]
- Rosch, P.; Harz, M.; Peschke, K.; Ronneberger, O.; Burkhardt, H. On-Line Monitoring and Identification of. Anal. Chem. 2006, 78, 2163–2170. [Google Scholar] [CrossRef] [PubMed]
- Schulte, F.; Lingott, J.; Panne, U.; Kneipp, J. Chemical Characterization and Classification of Pollen Chemical Characterization and Classification of Pollen. Anal. Chem. 2008, 80, 9551–9556. [Google Scholar] [CrossRef] [PubMed]
- Kalasinsky, K.S.; Hadfield, T.; Shea, A.A.; Kalasinsky, V.F.; Nelson, M.P.; Neiss, J.; Drauch, A.J.; Vanni, G.S.; Treado, P.J. Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: Signature development and evaluation. Anal. Chem. 2007, 79, 2658–2673. [Google Scholar] [CrossRef] [PubMed]
- De Gelder, J.; de Gussem, K.; Vandenabeele, P.; Moens, L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007, 38, 1133–1147. [Google Scholar] [CrossRef]
- Schaschek, K.; Popp, J.; Kiefer, W. Observation of morphology-dependent input and output resonances in time-dependent Raman spectra of optically levitated microdroplets. J. Raman Spectrosc. 1993, 24, 69–75. [Google Scholar] [CrossRef]
- Kaiser, T.; Roll, G.; Schweiger, G. Investigation of coated droplets in an optical trap: Raman-scattering, elastic-light-scattering, and evaporation characteristics. Appl. Opt. 1996, 35, 5918–5924. [Google Scholar] [CrossRef] [PubMed]
- King, M.D.; Thompson, K.C.; Ward, A.D. Laser tweezers raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: Implications for cloud-droplet properties. J. Am. Chem. Soc. 2004, 126, 16710–16711. [Google Scholar] [CrossRef] [PubMed]
- Symes, R.; Sayer, R.M.; Reid, J.P. Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects. Phys. Chem. Phys. Chem. 2004, 6, 474–487. [Google Scholar] [CrossRef]
- Mitchem, L.; Buajarern, J.; Hopkins, R.J.; Ward, A.D.; Gilham, R.J.J.; Johnston, R.L.; Reid, J.P. Spectroscopy of growing and evaporating water droplets: Exploring the variation in equilibrium droplet size with relative humidity. J. Phys. Chem. A 2006, 110, 8116–8125. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.R.; Mitchem, L.; Hanford, K.L.; Treuel, L.; Reid, J.P. In situ comparative measurements of the properties of aerosol droplets of different chemical composition. Faraday Discuss. 2008, 137, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Kriek, M.; Neylon, C.; Roach, P.L.; Clark, I.P.; Parker, A.W. A simple setup for the study of microvolume frozen samples using Raman spectroscopy. Rev. Sci. Instrum. 2005, 76, 1–3. [Google Scholar] [CrossRef]
- Ling, L.; Li, Y. Measurement of Raman spectra of single airborne absorbing particles trapped by a single laser beam. Opt. Lett. 2013, 38, 416–418. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.J.; Fitzgerald, C.; Gallimore, P.J.; Kalberer, M.; Kuimova, M.K.; Seville, P.C.; Ward, A.D.; Pope, F.D. Rapid interrogation of the physical and chemical characteristics of salbutamol sulphate aerosol from a pressurised metered-dose inhaler (pMDI). Chem. Commun. 2014, 50, 15499–15502. [Google Scholar] [CrossRef] [PubMed]
- Bankapur, A.; Krishnamurthy, R.S.; Zachariah, E.; Santhosh, C.; Chougule, B.; Praveen, B.; Valiathan, M.; Mathur, D. Micro-raman spectroscopy of silver nanoparticle induced stress on optically-trapped stem cells. PLoS ONE 2012, 7, e35075. [Google Scholar] [CrossRef] [PubMed]
- Pallaoro, A.; Hoonejani, M.R.; Braun, G.B.; Meinhart, C.; Moskovits, M. Combined surface-enhanced Raman spectroscopy biotags and microfluidic platform for quantitative ratiometric discrimination between noncancerous and cancerous cells in flow. J. Nanophotonics 2013, 7, 073092. [Google Scholar] [CrossRef]
- Dochow, S.; Krafft, C.; Neugebauer, U.; Bocklitz, T.; Henkel, T.; Mayer, G.; Albert, J.; Popp, J. Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Lab Chip 2011, 11, 1484–1490. [Google Scholar] [CrossRef] [PubMed]
- Jess, P.R.T.; Garcés-Chávez, V.; Riches, A.C.; Herrington, C.S.; Dholakia, K. Simultaneous Raman micro–spectroscopy of optically trapped and stacked cells. J. Raman Spectrosc. 2007, 38, 1082–1088. [Google Scholar] [CrossRef]
- Ramser, K.; Enger, J.; Goksör, M.; Hanstorp, D.; Logg, K.; Käll, M. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells. Lab Chip 2005, 5, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.Y.; Lee, L.P.; Chan, J.W. An integrated optofluidic platform for Raman-activated cell sorting. Lab Chip 2008, 8, 1116–1120. [Google Scholar] [CrossRef] [PubMed]
- Ramser, K.; Wenseleers, W.; Dewilde, S.; van Doorslaer, S.; Moens, L. The combination of resonance Raman spectroscopy, optical tweezers and microfluidic systems applied to the study of various heme-containing single cells. Spectroscopy 2008, 22, 287–295. [Google Scholar] [CrossRef]
- Huang, S.S.; Chen, D.; Pelczar, P.L.; Vepachedu, V.R.; Setlow, P.; Li, Y.Q. Levels of Ca2+-dipicolinic acid in individual Bacillus spores determined using microfluidic Raman tweezers. J. Bacteriol. 2007, 189, 4681–4687. [Google Scholar] [CrossRef] [PubMed]
- Lesser-Rojas, L.; Ebbinghaus, P.; Vasan, G.; Chu, M.L.; Erbe, A.; Chou, C.F. Low-copy number protein detection by electrode nanogap-enabled dielectrophoretic trapping for surface-enhanced Raman spectroscopy and electronic measurements. Nano Lett. 2014, 14, 2242–2250. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.-L.; Juang, Y.-J. Electrokinetic trapping and surface enhanced Raman scattering detection of biomolecules using optofluidic device integrated with a microneedles array. Biomicrofluidics 2013, 7, 014111. [Google Scholar] [CrossRef] [PubMed]
- Perozziello, G.; Catalano, R.; Francardi, M.; Rondanina, E.; Pardeo, F.; De Angelis, F.; Malara, N.; Candeloro, P.; Morrone, G.; di Fabrizio, E. A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells. Microelectron. Eng. 2013, 111, 314–319. [Google Scholar] [CrossRef]
- Pallaoro, A.; Hoonejani, M.R.; Braun, G.B.; Meinhart, C.D.; Moskovits, M. Rapid Identification by Surface-Enhanced Raman Spectroscopy of Cancer Cells at Low Concentrations Flowing in a Microfluidic Channel. ACS Nano 2015, 4, 4328–4336. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhao, F.; Zeng, J.; Qi, J.; Lu, J.; Shih, W.C. Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection. J. Biomed. Opt. 2014, 19, 111611. [Google Scholar] [CrossRef] [PubMed]
- Kho, K.W.; Qing, K.Z.M.; Shen, Z.X.; Ahmad, I.B.; Lim, S.S.C.; Mhaisalkar, S.; White, T.J.; Watt, F.; Soo, K.C.; Olivo, M. Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis. J. Biomed. Opt. 2015, 13, 054026. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yin, H.; Cooper, J.M.; Haswell, S.J. Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques. Anal. Bioanal. Chem. 2008, 390, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.; Monaghan, P.; Bowden, S.A.; Parnell, J.; Cooper, J.M. Surface-enhanced raman signatures of pigmentation of cyanobacteria from within geological samples in a spectroscopic-microfluidic flow cell. Anal. Chem. 2007, 79, 7036–7041. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.L.; Lee, L.P. Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl. Phys. Lett. 2005, 87, 074101. [Google Scholar] [CrossRef]
- Wang, S.; Setlow, P.; Li, Y. Slow Leakage of Ca-Dipicolinic Acid from Individual Bacillus Spores during Initiation of Spore Germination. J. Bacteriol. 2015, 197, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redding, B.; Schwab, M.J.; Pan, Y.-l. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles. Sensors 2015, 15, 19021-19046. https://doi.org/10.3390/s150819021
Redding B, Schwab MJ, Pan Y-l. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles. Sensors. 2015; 15(8):19021-19046. https://doi.org/10.3390/s150819021
Chicago/Turabian StyleRedding, Brandon, Mark J. Schwab, and Yong-le Pan. 2015. "Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles" Sensors 15, no. 8: 19021-19046. https://doi.org/10.3390/s150819021
APA StyleRedding, B., Schwab, M. J., & Pan, Y. -l. (2015). Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles. Sensors, 15(8), 19021-19046. https://doi.org/10.3390/s150819021