Growth of photovoltaics

Between 1992 and 2023, the worldwide usage of photovoltaics (PV) increased exponentially. During this period, it evolved from a niche market of small-scale applications to a mainstream electricity source.[4] From 2016-2022 it has seen an annual capacity and production growth rate of around 26%- doubling approximately every three years.

Benefitting from favorable policies and declining costs of modules, photovoltaic solar installation has grown consistently.[1][2] In 2023, China added 60% of the world's new capacity.[3]

When solar PV systems were first recognized as a promising renewable energy technology, subsidy programs, such as feed-in tariffs, were implemented by a number of governments in order to provide economic incentives for investments. For several years, growth was mainly driven by Japan and pioneering European countries. As a consequence, cost of solar declined significantly due to experience curve effects like improvements in technology and economies of scale. Several national programs were instrumental in increasing PV deployment, such as the Energiewende in Germany, the Million Solar Roofs project in the United States, and China's 2011 five-year-plan for energy production.[5] Since then, deployment of photovoltaics has gained momentum on a worldwide scale, increasingly competing with conventional energy sources. In the early 21st century a market for utility-scale plants emerged to complement rooftop and other distributed applications.[6] By 2015, some 30 countries had reached grid parity.[7]: 9 

Since the 1950s, when the first solar cells were commercially manufactured, there has been a succession of countries leading the world as the largest producer of electricity from solar photovoltaics. First it was the United States, then Japan,[8] followed by Germany, and currently China.

By the end of 2022, the global cumulative installed PV capacity reached about 1,185 gigawatts (GW), supplying over 6% of global electricity demand,[9] up from about 3% in 2019.[10] In 2022, solar PV contributed over 10% of the annual domestic consumption of electricity in nine countries, with Spain, Greece and Chile over 17%.[9]

Official agencies publish predictions of solar growth, often underestimating it.[11] The International Energy Agency (IEA) have consistently increased their estimates for decades, while still falling far short of projecting actual deployment in every forecast.[12][13] Bloomberg NEF projects an additional 600 GW coming online by 2030 in the United States.[14] By 2050, the IEA foresees solar PV to reach 4.7 terawatts (4,674 GW) in its high-renewable scenario, of which more than half will be deployed in China and India, making solar power the world's largest source of electricity.[15][16]

Solar PV nameplate capacity

edit

Nameplate capacity denotes the peak power output of power stations in unit watt prefixed as convenient, to e.g. kilowatt (kW), megawatt (MW) and gigawatt (GW). Because power output for renewable sources is variable, a source's average generation is generally significantly lower than the nameplate capacity. In order to have an estimate of the average power output, the capacity can be multiplied by a suitable capacity factor, which takes into account varying conditions - weather, nighttime, latitude, maintenance. Worldwide, the average solar PV capacity factor is 11%.[17] In addition, depending on context, the stated peak power may be prior to a subsequent conversion to alternating current, e.g. for a single photovoltaic panel, or include this conversion and its loss for a grid connected photovoltaic power station.[18]: 15 [19]: 10 

Wind power has different characteristics, e.g. a higher capacity factor and about four times the 2015 electricity production of solar power. Compared with wind power, photovoltaic power production correlates well with power consumption for air-conditioning in warm countries. As of 2017, a handful of utilities have started combining PV installations with battery banks, thus obtaining several hours of dispatchable generation to help mitigate problems associated with the duck curve after sunset.[20][21]

Current status

edit
 
Solar generation by country, 2021[22]

In 2022, the total global photovoltaic capacity increased by 228 GW, with a 24% growth year-on-year of new installations. As a result, the total global capacity exceeded 1,185 GW by the end of the year.[9]

Asia was the biggest installer of solar in 2022, with 60% of new capacity and 60% of total capacity. China alone amounted to over 40% of new solar and almost 40% of total capacity, but only 30% of generation.[22]

North America produced 16% of the world total, led by the United States. North America had the highest capacity factor of all continents in 2022 at 20%, ahead of South America (16%) and the world at large (14%).[22]

Almost all of the solar in Oceania (39TWh) was generated in Australia in 2022, in either case amounting to 3% of the world total. However, Oceania had the highest proportion of electricity that was solar in 2022 at 12%, ahead of Europe (4.9%), Asia (4.9%) and the world overall (4.6%).[22]

History of leading countries

edit
 
The growth of solar PV on a semi-log scale since 1996

The United States was the leader of installed photovoltaics for many years, and its total capacity was 77 megawatts in 1996, more than any other country in the world at the time. From the late 1990s, Japan was the world's leader of solar electricity production until 2005, when Germany took the lead and by 2016 had a capacity of over 40 gigawatts. In 2015, China surpassed Germany to become the world's largest producer of photovoltaic power,[23] and in 2017 became the first country to surpass 100 GW of installed capacity. Leading countries per capita in 2022 were Australia, Netherlands and Germany.

United States (1954–1996)

edit

The United States, where modern solar PV was invented, led installed capacity for many years. Based on preceding work by Swedish and German engineers, the American engineer Russell Ohl at Bell Labs patented the first modern solar cell in 1946.[24][25][26] It was also there at Bell Labs where the first practical c-silicon cell was developed in 1954.[27][28] Hoffman Electronics, the leading manufacturer of silicon solar cells in the 1950s and 1960s, improved on the cell's efficiency, produced solar radios, and equipped Vanguard I, the first solar powered satellite launched into orbit in 1958.

In 1977 US-President Jimmy Carter installed solar hot water panels on the White House (later removed by President Reagan) promoting solar energy[29] and the National Renewable Energy Laboratory, originally named Solar Energy Research Institute was established at Golden, Colorado. The Carter administration provided major subsidies for research into photovoltaic technology and sought to increase commercialization in the industry.[30]: 143 

In the early 1980s, the US accounted for more than 85% of the solar market.[30]: 143 

During the Reagan administration, oil prices decreased and the US removed most of its policies that supported its solar industry.[30]: 143  Government subsidies were higher in Germany and Japan, which prompted the industrial supply chain to begin moving from the US to those countries.[30]: 143 

Japan (1997–2004)

edit

Japan took the lead as the world's largest producer of PV electricity, after the city of Kobe was hit by the Great Hanshin earthquake in 1995. Kobe experienced severe power outages in the aftermath of the earthquake, and PV systems were then considered as a temporary supplier of power during such events, as the disruption of the electric grid paralyzed the entire infrastructure, including gas stations that depended on electricity to pump gasoline. Moreover, in December of that same year, an accident occurred at the multibillion-dollar experimental Monju Nuclear Power Plant. A sodium leak caused a major fire and forced a shutdown (classified as INES 1). There was massive public outrage when it was revealed that the semigovernmental agency in charge of Monju had tried to cover up the extent of the accident and resulting damage.[31][32] Japan remained world leader in photovoltaics until 2004, when its capacity amounted to 1,132 megawatts. Then, focus on PV deployment shifted to Europe.

Germany (2005–2014)

edit

In 2005, Germany took the lead from Japan. With the introduction of the Renewable Energy Act in 2000, feed-in tariffs were adopted as a policy mechanism. This policy established that renewables have priority on the grid, and that a fixed price must be paid for the produced electricity over a 20-year period, providing a guaranteed return on investment irrespective of actual market prices. As a consequence, a high level of investment security lead to a soaring number of new photovoltaic installations that peaked in 2011, while investment costs in renewable technologies were brought down considerably. In 2016 Germany's installed PV capacity was over the 40 GW mark.

China (2015–present)

edit

China surpassed Germany's capacity by the end of 2015, becoming the world's largest producer of photovoltaic power.[33] China's rapid PV growth continued in 2016 – with 34.2 GW of solar photovoltaics installed.[34] The quickly lowering feed in tariff rates[35] at the end of 2015 motivated many developers to secure tariff rates before mid-year 2016 – as they were anticipating further cuts (correctly so[36]). During the course of the year, China announced its goal of installing 100 GW during the next Chinese Five Year Economic Plan (2016–2020). China expected to spend ¥1 trillion ($145B) on solar construction[37] during that period. Much of China's PV capacity was built in the relatively less populated west of the country whereas the main centres of power consumption were in the east (such as Shanghai and Beijing).[38] Due to lack of adequate power transmission lines to carry the power from the solar power plants, China had to curtail its PV generated power.[38][39][40]

China continues to be the global leader in solar power generation and production as of at least 2024.[30]: 143  China has one third of the world's installed solar panel capacity and is the largest domestic market for solar panels.[30]: 143  80% of the world's production in the solar industry is made by Chinese companies and their subsidiaries.[30]: 143  Chinese firms are the most significant enterprises in almost all parts of the solar manufacturing supply chain, including polysilicon, silicon wafers, batteries, and photovoltaic modules.[30]: 143 

History of market development

edit

Prices and costs (1977–present)

edit
Swanson's law–stating that solar module prices have dropped about 20% for each doubling of installed capacity—defines the "learning curve" of solar photovoltaics.[41]
Price decline of c-Si solar cells
Type of cell or module Price per Watt
Multi-Si Cell (≥18.6%) $0.071
Mono-Si Cell (≥20.0%) $0.090
G1 Mono-Si Cell (>21.7%) $0.099
M6 Mono-Si Cell (>21.7%) $0.100
275W - 280W (60P) Module $0.176
325W - 330W (72P) Module $0.188
305W - 310W Module $0.240
315W - 320W Module $0.190
>325W - >385W Module $0.200
Source: EnergyTrend, price quotes, average prices, 13 July 2020[42] 

The average price per watt dropped drastically for solar cells in the decades leading up to 2017. While in 1977 prices for crystalline silicon cells were about $77 per watt, average spot prices in August 2018 were as low as $0.13 per watt or nearly 600 times less than forty years ago. Prices for thin-film solar cells and for c-Si solar panels were around $.60 per watt.[43] Module and cell prices declined even further after 2014 (see price quotes in table).

This price trend was seen as evidence supporting Swanson's law (an observation similar to the famous Moore's Law) that states that the per-watt cost of solar cells and panels fall by 20 percent for every doubling of cumulative photovoltaic production.[44] A 2015 study showed price/kWh dropping by 10% per year since 1980, and predicted that solar could contribute 20% of total electricity consumption by 2030.[45]

The followed figures for select countries represent the cost per kilowatt of utility-scale solar generation, as well as price per kilowatt-hour in 2022 and a comparison with 2010. Dollars are in 2022 international dollars. Data are from IRENA.[46]

Country $ / kW
2022
$ / kWh
2022
$/kWh
2010
%
down
Australia 923 0.041 0.453 -91%
China 715 0.037 0.331 -89%
France 1,157 0.062 0.423 -85%
Germany 996 0.080 0.401 -80%
India 640 0.037 0.376 -90%
South Korea 1,338 0.074 0.482 -85%
Spain 778 0.046 0.348 -87%
United States 1,119 0.058 0.235 -75%

Technologies (1980s–present)

edit
 
Global photovoltaics market share by technology 1980-2021. [47]: 24, 25 

During the 1980s, Professor Martin Green developed numerous technologies which made solar power generation more efficient.[30]: 143  Many of Green's students later became important in China's solar industry, including Shi Zhengrong (who founded Suntech with the support of Wuxi city government).[30]: 143 

There were significant advances in conventional crystalline silicon (c-Si) technology in the years leading up to 2017. The falling cost of the polysilicon since 2009, that followed after a period of severe shortage (see below) of silicon feedstock, pressure increased on manufacturers of commercial thin-film PV technologies, including amorphous thin-film silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS), led to the bankruptcy of several thin-film companies that had once been highly touted.[48] The sector faced price competition from Chinese crystalline silicon cell and module manufacturers, and some companies together with their patents were sold below cost.[49]

Global PV market by technology in 2021.[47]: 24, 25 

  CdTe (4.1%)
  a-Si (0.1%)
  CIGS (0.8%)
  mono-Si (82%)
  multi-Si (13%)

In 2013 thin-film technologies accounted for about 9 percent of worldwide deployment, while 91 percent was held by crystalline silicon (mono-Si and multi-Si). With 5 percent of the overall market, CdTe held more than half of the thin-film market, leaving 2 percent to each CIGS and amorphous silicon.[50]: 24–25 

Copper indium gallium selenide (CIGS) is the name of the semiconductor material on which the technology is based. One of the largest producers of CIGS photovoltaics in 2015 was the Japanese company Solar Frontier with a manufacturing capacity in the gigawatt-scale. Their CIS line technology included modules with conversion efficiencies of over 15%.[51] The company profited from the booming Japanese market and attempted to expand its international business. However, several prominent manufacturers could not keep up with the advances in conventional crystalline silicon technology. The company Solyndra ceased all business activity and filed for Chapter 11 bankruptcy in 2011, and Nanosolar, also a CIGS manufacturer, closed its doors in 2013. Although both companies produced CIGS solar cells, it has been pointed out, that the failure was not due to the technology but rather because of the companies themselves, using a flawed architecture, such as, for example, Solyndra's cylindrical substrates.[52]
The U.S.-company First Solar, a leading manufacturer of CdTe, built several of the world's largest solar power stations, such as the Desert Sunlight Solar Farm and Topaz Solar Farm, both in the Californian desert with 550 MW capacity each, as well as the 102 MWAC Nyngan Solar Plant in Australia (the largest PV power station in the Southern Hemisphere at the time) commissioned in mid-2015.[53] The company was reported in 2013 to be successfully producing CdTe-panels with a steadily increasing efficiency and declining cost per watt.[54]: 18–19  CdTe was the lowest energy payback time of all mass-produced PV technologies, and could be as short as eight months in favorable locations.[50]: 31  The company Abound Solar, also a manufacturer of cadmium telluride modules, went bankrupt in 2012.[55]
In 2012, ECD solar, once one of the world's leading manufacturer of amorphous silicon (a-Si) technology, filed for bankruptcy in Michigan, United States. Swiss OC Oerlikon divested its solar division that produced a-Si/μc-Si tandem cells to Tokyo Electron Limited.[56][57] Other companies that left the amorphous silicon thin-film market include DuPont, BP, Flexcell, Inventux, Pramac, Schuco, Sencera, EPV Solar,[58] NovaSolar (formerly OptiSolar)[59] and Suntech Power that stopped manufacturing a-Si modules in 2010 to focus on crystalline silicon solar panels. In 2013, Suntech filed for bankruptcy in China.[60][61]

Silicon shortage (2005–2008)

edit
 
Polysilicon prices since 2004. As of July 2020, the ASP for polysilicon stands at $6.956/kg[42]

In the early 2000s, prices for polysilicon, the raw material for conventional solar cells, were as low as $30 per kilogram and silicon manufacturers had no incentive to expand production.

However, there was a severe silicon shortage in 2005, when governmental programmes caused a 75% increase in the deployment of solar PV in Europe. In addition, the demand for silicon from semiconductor manufacturers was growing. Since the amount of silicon needed for semiconductors makes up a much smaller portion of production costs, semiconductor manufacturers were able to outbid solar companies for the available silicon in the market.[62]

Initially, the incumbent polysilicon producers were slow to respond to rising demand for solar applications, because of their painful experience with over-investment in the past. Silicon prices sharply rose to about $80 per kilogram, and reached as much as $400/kg for long-term contracts and spot prices. In 2007, the constraints on silicon became so severe that the solar industry was forced to idle about a quarter of its cell and module manufacturing capacity—an estimated 777 MW of the then available production capacity. The shortage also provided silicon specialists with both the cash and an incentive to develop new technologies and several new producers entered the market. Early responses from the solar industry focused on improvements in the recycling of silicon. When this potential was exhausted, companies have been taking a harder look at alternatives to the conventional Siemens process.[63]

As it takes about three years to build a new polysilicon plant, the shortage continued until 2008. Prices for conventional solar cells remained constant or even rose slightly during the period of silicon shortage from 2005 to 2008. This is notably seen as a "shoulder" that sticks out in the Swanson's PV-learning curve and it was feared that a prolonged shortage could delay solar power becoming competitive with conventional energy prices without subsidies.

In the meantime the solar industry lowered the number of grams-per-watt by reducing wafer thickness and kerf loss, increasing yields in each manufacturing step, reducing module loss, and raising panel efficiency. Finally, the ramp up of polysilicon production alleviated worldwide markets from the scarcity of silicon in 2009 and subsequently lead to an overcapacity with sharply declining prices in the photovoltaic industry for the following years.

Solar overcapacity (2009–2013)

edit
Solar module production
utilization of production capacity in %
Utilization rate of solar PV module production capacity in % since 1993[64]: 47 

As the polysilicon industry had started to build additional large production capacities during the shortage period, prices dropped as low as $15 per kilogram forcing some producers to suspend production or exit the sector. Prices for silicon stabilized around $20 per kilogram and the booming solar PV market helped to reduce the enormous global overcapacity from 2009 onwards. However, overcapacity in the PV industry continued to persist. In 2013, global record deployment of 38 GW (updated EPIA figure[18]) was still much lower than China's annual production capacity of approximately 60 GW. Continued overcapacity was further reduced by significantly lowering solar module prices and, as a consequence, many manufacturers could no longer cover costs or remain competitive. As worldwide growth of PV deployment continued, the gap between overcapacity and global demand was expected in 2014 to close in the next few years.[65]

IEA-PVPS published in 2014 historical data for the worldwide utilization of solar PV module production capacity that showed a slow return to normalization in manufacture in the years leading up to 2014. The utilization rate is the ratio of production capacities versus actual production output for a given year. A low of 49% was reached in 2007 and reflected the peak of the silicon shortage that idled a significant share of the module production capacity. As of 2013, the utilization rate had recovered somewhat and increased to 63%.[64]: 47 

Anti-dumping duties (2012–present)

edit

After anti-dumping petition were filed and investigations carried out,[66] the United States imposed tariffs of 31 percent to 250 percent on solar products imported from China in 2012.[67] A year later, the EU also imposed definitive anti-dumping and anti-subsidy measures on imports of solar panels from China at an average of 47.7 percent for a two-year time span.[68]

Shortly thereafter, China, in turn, levied duties on U.S. polysilicon imports, the feedstock for the production of solar cells.[69] In January 2014, the Chinese Ministry of Commerce set its anti-dumping tariff on U.S. polysilicon producers, such as Hemlock Semiconductor Corporation to 57%, while other major polysilicon producing companies, such as German Wacker Chemie and Korean OCI were much less affected. All this has caused much controversy between proponents and opponents and was subject of debate.

History of deployment

edit
 
2016-2020 development of the Bhadla Solar Park (India), documented on Sentinel-2 satellite imagery

Deployment figures on a global, regional and nationwide scale are well documented since the early 1990s. While worldwide photovoltaic capacity grew continuously, deployment figures by country were much more dynamic, as they depended strongly on national policies. A number of organizations release comprehensive reports on PV deployment on a yearly basis. They include annual and cumulative deployed PV capacity, typically given in watt-peak, a break-down by markets, as well as in-depth analysis and forecasts about future trends.

Timeline of the largest PV power stations in the world
Year(a) Name of PV power station Country Capacity
MW
1982 Lugo United States 1
1985 Carrisa Plain United States 5.6
2005 Bavaria Solarpark (Mühlhausen) Germany 6.3
2006 Erlasee Solar Park Germany 11.4
2008 Olmedilla Photovoltaic Park Spain 60
2010 Sarnia Photovoltaic Power Plant Canada 97
2011 Huanghe Hydropower Golmud Solar Park China 200
2012 Agua Caliente Solar Project United States 290
2014 Topaz Solar Farm(b) United States 550
2015 Longyangxia Dam Solar Park China 850
2016 Tengger Desert Solar Park China 1547
2019 Pavagada Solar Park India 2050
2020 Bhadla Solar Park India 2245
2024 Midong Solar Park China 3500
Also see list of photovoltaic power stations and list of notable solar parks
(a) year of final commissioning (b) capacity given in  MWAC otherwise in MWDC

Growth by year

edit
100
200
300
400
500
2002
2006
2010
2014
2018
2023
Added capacity in gigawatts.

  annual deployment since 2002 

  2023: 413 GW (estimate) [70]
 
Yearly solar generation by continent
 
Grid parity for solar PV systems around the world
  Reached grid-parity before 2014
  Reached grid-parity after 2014
  Reached grid-parity only for peak prices
  U.S. states poised to reach grid-parity
Source: Deutsche Bank, as of February 2015

Number of countries with PV
capacities in the gigawatt-scale

Growing number of solar gigawatt-markets
  Over 1 GW
  Over 10 GW
  Over 100 GW
  • 2021  [71]                  
    2017                    

Between 2000 and 2022, solar capacity increased by an average of 37% per year, doubling every 2.2 years. Over the same time period, the capacity factor increased from 10% to 14%. Data in the following table are from Ember, released in 2024,[22] with earlier data from BP released in 2014.[72]

Year Gen
(TWh)
%
gen.
Cap.
(GW)
% cap.
growth
Cap.
fac.
BP data[72]
1989 0.3
1990 0.4
1991 0.5
1992 0.5
1993 0.6
1994 0.6
1995 0.6
1996 0.7 0.3
1997 0.7 0.4 37%
1998 0.8 0.6 34%
1999 0.9 0.8 43%
Ember data[22]
2000 1.1 0.01 1.2 10%
2001 1.4 0.01 1.5 20% 11%
2002 1.7 0.01 1.8 24% 11%
2003 2.1 0.01 2.4 28% 10%
2004 2.8 0.02 3.4 46% 9%
2005 4.0 0.02 5.0 44% 9%
2006 5.4 0.03 6.5 31% 9%
2007 7.3 0.04 9.0 38% 9%
2008 11.9 0.06 15.3 70% 9%
2009 19.8 0.10 23.6 55% 9%
2010 32.2 0.15 41.6 76% 9%
2011 63.6 0.29 73.9 78% 10%
2012 97.0 0.43 104.2 41% 11%
2013 132.0 0.57 141.4 36% 11%
2014 197.7 0.83 180.8 28% 13%
2015 256.0 1.07 229.1 27% 13%
2016 328.1 1.33 301.2 31% 12%
2017 445.2 1.75 396.3 32% 13%
2018 574.1 2.17 492.6 24% 13%
2019 704.8 2.63 595.5 21% 13%
2020 853.7 3.20 728.4 22% 13%
2021 1048.5 3.72 873.9 20% 14%
2022 1315.9 4.56 1073.1 23% 14%

See also

edit

Notes

edit

References

edit
  1. ^ "Chart: Solar installations set to break global, US records in 2023". Canary Media. 15 September 2023. Archived from the original on 17 September 2023. For relevant chart, Canary Media credits: "Source: BloombergNEF, September 2023"
  2. ^ Chase, Jenny (5 September 2023). "3Q 2023 Global PV Market Outlook". BloombergNEF. Archived from the original on 21 September 2023.
  3. ^ 2023 data: Chase, Jenny (4 March 2024). "1Q 2024 Global PV Market Outlook". BNEF.com. BloombergNEF. Archived from the original on 13 June 2024.
  4. ^ Jaeger, Joel (20 September 2021). "Explaining the Exponential Growth of Renewable Energy".
  5. ^ Lacey, Stephen (12 September 2011). "How China dominates solar power". Guardian Environment Network. Retrieved 29 June 2014.
  6. ^ Wolfe, Philip (2012). Solar Photovoltaic Projects in the mainstream power market. Routledge. p. 225. ISBN 9780415520485.
  7. ^ "Crossing the Chasm" (PDF). Deutsche Bank Markets Research. 27 February 2015. Archived (PDF) from the original on 30 March 2015.
  8. ^ Wolfe, Philip (2018). The Solar Generation. Wiley - IEEE. p. 81. ISBN 9781119425588.
  9. ^ a b c Snapshot of Global PV Markets 2023, IEA Photovoltaic Power Systems Programme.
  10. ^ "Snapshot 2020 – IEA-PVPS". iea-pvps.org. Retrieved 10 May 2020.
  11. ^ Whitmore, Adam (14 October 2013). "Why Have IEA Renewables Growth Projections Been So Much Lower Than the Out-Turn?". The Energy Collective. Archived from the original on 30 October 2014. Retrieved 30 October 2014.
  12. ^ "The projections for the future and quality in the past of the World Energy Outlook for solar PV and other renewable energy technologies" (PDF). Energywatchgroup. September 2015. Archived from the original (PDF) on 15 September 2016.
  13. ^ Osmundsen, Terje (4 March 2014). "How the IEA exaggerates the costs and underestimates the growth of solar power". Energy Post. Archived from the original on 13 November 2014. Retrieved 30 October 2014.
  14. ^ "2H 2023 US Clean Energy Market Outlook". BNEF – Bloomberg New Energy Finance. 1 November 2023. Retrieved 7 January 2024.
  15. ^ International Energy Agency (2014). "Technology Roadmap: Solar Photovoltaic Energy" (PDF). iea.org. IEA. Archived (PDF) from the original on 1 October 2014. Retrieved 7 October 2014.
  16. ^ "One Chart Shows How Solar Could Dominate Electricity in 30 Years". Business Insider. 30 September 2014.
  17. ^ "Electric generator capacity factors vary widely around the world". eia.gov. 6 September 2015. Retrieved 17 June 2018.
  18. ^ a b "Global Market Outlook for Photovoltaics 2014–2018" (PDF). epia.org. EPIA – European Photovoltaic Industry Association. Archived (PDF) from the original on 25 June 2014. Retrieved 12 June 2014.
  19. ^ "Snapshot of Global PV 1992–2013" (PDF). iea-pvps.org/index.php?id=trends0. International Energy Agency – Photovoltaic Power Systems Programme. 31 March 2014. Archived (PDF) from the original on 7 April 2014.
  20. ^ Alter, Lloyd (31 January 2017). "Tesla kills the duck with big batteries". TreeHugger. Retrieved 16 March 2017.
  21. ^ LeBeau, Phil (8 March 2017). "Tesla battery packs power the Hawaiian island of Kauai after dark". CNBC. Retrieved 16 March 2017.
  22. ^ a b c d e f "Yearly electricity data". ember-climate.org. 6 December 2023. Retrieved 23 December 2023.
  23. ^ "China's solar capacity overtakes Germany in 2015, industry data show". Reuters. 21 January 2016.
  24. ^ Wolfe, Philip (2018). The Solar Generation. Wiley - IEEE. p. 120. ISBN 9781119425588.
  25. ^ United States Patent and Trademark Office – Database
  26. ^ Magic Plates, Tap Sun For Power. Popular Science. June 1931. Retrieved 2 August 2013.
  27. ^ "Bell Labs Demonstrates the First Practical Silicon Solar Cell". aps.org.
  28. ^ D. M. Chapin-C. S. Fuller-G. L. Pearson (1954). "A New Silicon p–n Junction Photocell for Converting Solar Radiation into Electrical Power". Journal of Applied Physics. 25 (5): 676–677. Bibcode:1954JAP....25..676C. doi:10.1063/1.1721711.
  29. ^ Biello David (6 August 2010). "Where Did the Carter White House's Solar Panels Go?". Scientific American. Retrieved 31 July 2014.
  30. ^ a b c d e f g h i j Lan, Xiaohuan (2024). How China Works: An Introduction to China's State-led Economic Development. Translated by Topp, Gary. Palgrave Macmillan. doi:10.1007/978-981-97-0080-6. ISBN 978-981-97-0079-0.
  31. ^ Pollack, Andrew (24 February 1996). "REACTOR ACCIDENT IN JAPAN IMPERILS ENERGY PROGRAM". The New York Times.
  32. ^ wise-paris.org Sodium Leak and Fire at Monju
  33. ^ S Hill, Joshua (22 January 2016). "China Overtakes Germany To Become World's Leading Solar PV Country". Clean Technica. Retrieved 16 August 2016.
  34. ^ "NEA: China added 34.24 GW of solar PV capacity in 2016". solarserver.com. Retrieved 22 January 2017.
  35. ^ "China to cut on-grid tariffs for solar, wind power: state planner". Reuters. 24 December 2015. Archived from the original on 25 April 2023.
  36. ^ "The Latest in Clean Energy News".
  37. ^ "China to plow $361 billion into renewable fuel by 2020". Reuters. 5 January 2017. Retrieved 22 January 2017.
  38. ^ a b Baraniuk, Chris (22 June 2017). "Future Energy: China leads world in solar power production". BBC News. Retrieved 27 June 2017.
  39. ^ "China wasted enough renewable energy to power Beijing for an entire year, says Greenpeace". 19 April 2017. Retrieved 19 April 2017.
  40. ^ "China to erect fewer farms, generate less solar power in 2017". 19 April 2017. Retrieved 19 April 2017.
  41. ^ "Solar (photovoltaic) panel prices vs. cumulative capacity". OurWorldInData.org. 2023. Archived from the original on 29 September 2023. OWID credits source data to: Nemet (2009); Farmer & Lafond (2016); International Renewable Energy Agency (IRENA).
  42. ^ a b "Price quotes updated weekly – PV Spot Prices". PV EnergyTrend. Retrieved 13 July 2020.
  43. ^ "PriceQuotes". pv.energytrend.com. Archived from the original on 30 June 2014. Retrieved 26 June 2014.
  44. ^ "Sunny Uplands: Alternative energy will no longer be alternative". The Economist. 21 November 2012. Retrieved 28 December 2012.
  45. ^ J. Doyne Farmer, François Lafond (2 November 2015). "How predictable is technological progress?". Research Policy. 45 (3): 647–665. arXiv:1502.05274. doi:10.1016/j.respol.2015.11.001. S2CID 154564641. License: cc. Note: Appendix F. A trend extrapolation of solar energy capacity.
  46. ^ "Solar costs". irena.org. 2023. Retrieved 7 January 2024.
  47. ^ a b "Photovoltaics Report" (PDF). Fraunhofer ISE. 22 September 2022. Archived (PDF) from the original on 23 September 2022.
  48. ^ RenewableEnergyWorld.com How thin film solar fares vs crystalline silicon, 3 January 2011
  49. ^ Diane Cardwell; Keith Bradsher (9 January 2013). "Chinese Firm Buys U.S. Solar Start-Up". The New York Times. Retrieved 10 January 2013.
  50. ^ a b "Photovoltaics Report" (PDF). Fraunhofer ISE. 28 July 2014. Archived (PDF) from the original on 9 August 2014. Retrieved 31 August 2014.
  51. ^ "Solar Frontier Completes Construction of the Tohoku Plant". Solar Frontier. 2 April 2015. Retrieved 30 April 2015.
  52. ^ Andorka, Frank (8 January 2014). "CIGS Solar Cells, Simplified". Solar Power World. Archived from the original on 19 August 2014. Retrieved 16 August 2014.
  53. ^ "Nyngan Solar Plant". AGL Energy Online. Retrieved 18 June 2015.
  54. ^ CleanTechnica.com First Solar Reports Largest Quarterly Decline In CdTe Module Cost Per-Watt Since 2007, 7 November 2013
  55. ^ Raabe, Steve; Jaffe, Mark (4 November 2012). "Bankrupt Abound Solar of Colo. lives on as political football". The Denver Post.
  56. ^ "The End Arrives for ECD Solar". greentechmedia.com. Retrieved 27 January 2016.
  57. ^ "Oerlikon Divests Its Solar Business and the Fate of Amorphous Silicon PV". greentechmedia.com. Retrieved 27 January 2016.
  58. ^ GreenTechMedia.com Rest in Peace: The List of Deceased Solar Companies, 6 April 2013
  59. ^ "NovaSolar, Formerly OptiSolar, Leaving Smoking Crater in Fremont". greentechmedia.com. Retrieved 27 January 2016.
  60. ^ "Chinese Subsidiary of Suntech Power Declares Bankruptcy". The New York Times. 20 March 2013.
  61. ^ "Suntech Seeks New Cash After China Bankruptcy, Liquidator Says". Bloomberg News. 29 April 2014.
  62. ^ Wired.com Silicon Shortage Stalls Solar 28 March 2005
  63. ^ "Solar State of the Market Q3 2008 – Rise of Upgraded Metallurgical Silicon" (PDF). SolarWeb. Lux Research Inc. p. 1. Archived from the original (PDF) on 18 October 2014. Retrieved 12 October 2014.
  64. ^ "Annual Report 2013/2014" (PDF). ISE.Fraunhofer.de. Fraunhofer Institute for Solar Energy Systems-ISE. 2014. p. 1. Archived (PDF) from the original on 5 November 2014. Retrieved 5 November 2014.
  65. ^ Europa.eu EU initiates anti-dumping investigation on solar panel imports from China
  66. ^ U.S. Imposes Anti-Dumping Duties on Chinese Solar Imports, 12 May 2012
  67. ^ Europa.eu EU imposes definitive measures on Chinese solar panels, confirms undertaking with Chinese solar panel exporters, 2 December 2013
  68. ^ "China to levy duties on US polysilicon imports". China Daily. 16 September 2013. Archived from the original on 5 March 2016.
  69. ^ "All I want for Christmas is one terrawatt of solar installed annually". 23 December 2023.
  70. ^ Lewis, Michelle (15 June 2021). "US solar sets a Q1 record, but there may be trouble ahead". Electrek. Retrieved 18 June 2021.
  71. ^ a b "Title". bp.com. 2014. Archived from the original on 22 June 2014. Retrieved 7 January 2024.
edit