Jump to content

Molière radius

From Wikipedia, the free encyclopedia

The Molière radius is a characteristic constant of a material giving the scale of the transverse dimension of the fully contained electromagnetic showers initiated by an incident high energy electron or photon. By definition, it is the radius of a cylinder containing on average 90% of the shower's energy deposition. Two Molière radii contain 95% of the shower's energy deposition. It is related to the radiation length X0 by the approximate relation RM = 0.0265 X0 (Z + 1.2), where Z is the atomic number.[1] The Molière radius is useful in experimental particle physics in the design of calorimeters: a smaller Molière radius means better shower position resolution, and better shower separation due to a smaller degree of shower overlaps.

The Molière radius is named after German physicist Paul Friederich Gaspard Gert Molière (1909–64).[2]

Molière radii for typical materials used in calorimetry

[edit]

References

[edit]
  1. ^ Molière Radius Archived 2007-10-02 at the Wayback Machine
  2. ^ Phillip R. Sloan, Brandon Fogel, "Creating a Physical Biology: The Three-Man Paper and Early Molecular Biology" University of Chicago Press, 2011
  3. ^ Collaboration, PIONEER; et al. (2022). "Testing Lepton Flavor Universality and CKM Unitarity with Rare Pion Decays in the PIONEER experiment". arXiv:2203.05505 [hep-ex].
  4. ^ The CMS Collaboration (2006). "Chapter 1. Introduction". CMS Physics : Technical Design Report Volume 1: Detector Performance and Software. CERN. p. 14. ISBN 9789290832683. CMS has chosen lead tungstate scintillating crystals for its ECAL. These crystals have short radiation (X0 = 0.89 cm) and Moliere (2.2 cm) lengths, are fast (80% of the light is emitted within 25 ns) and radiation hard (up to 10 Mrad).
  5. ^ Atomic and nuclear properties of cesium iodide (CsI)
  6. ^ Fanti, V.; Barr, G.D.; Buchholz, P.; Cundy, D.; Doble, N.; Gatignon, L.; Gonidec, A.; Hallgren, B.; Kesseler, G.; Lacourt, A.; Laverrière, G.; Linser, G.; Norton, A.; Schinzel, D.; Seidl, W.; Stemmler, T.; Taureg, H.; Viehhauser, G.; Wahl, H.; Duclos, J.; Gianoli, A.; Martini, M.; Piemontese, L.; Savrié, M.; Kalinin, A.; Kekelidze, J.; Kozhevnikov, Y.; Coward, D.; Leber, F.; Cenci, P.; Lariccia, P.; Lubrano, P.; Pepe, M.; Calafiura, P.; Cerri, C.; Fantechi, R.; Gorini, B.; Laico, F.; Mannelli, I.; Marzulli, V.; Schiuma, D.; Debu, P.; Mazzucato, E.; Migliori, A.; Peyaud, B.; Turlay, R.; Kreutz, A.; Biino, C.; Ceccucci, A.; Palestini, S.; Griesmayer, E.; Markytan, M.; Neuhofer, G.; Pernicka, M.; Taurok, T.; Wulz, C.-E. (May 1994). "Performance of an electromagnetic liquid krypton calorimeter" (PDF). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 344 (3): 507–520. doi:10.1016/0168-9002(94)90871-0. Retrieved 1 December 2022.
  7. ^ Atomic and nuclear properties of materials: Liquid argon (Ar) (Ar)
  8. ^ Greisen, Kenneth (1960). "Cosmic Ray Showers". Annual Review of Nuclear Science. 10. Laboratory of Nuclear Studies, Cornell University, Ithaca, N. Y.: 71. Bibcode:1960ARNPS..10...63G. doi:10.1146/annurev.ns.10.120160.000431.
  9. ^ Pierre Auger Collaboration (2009). "Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory". Astroparticle Physics. 32 (2): 89–99. arXiv:0906.5497. Bibcode:2009APh....32...89P. doi:10.1016/j.astropartphys.2009.06.004.