Quizbank/Electricity and Magnetism (calculus based)/QB153086031104
QB153086031104
QB:Ch 5:V0
[edit | edit source]QB153086031104
- a) 5.914E+01 degrees
- b) 6.506E+01 degrees
- c) 7.157E+01 degrees
- d) 7.872E+01 degrees
- e) 8.659E+01 degrees
- a) 5.352E+09 N/C2
- b) 5.887E+09 N/C2
- c) 6.476E+09 N/C2
- d) 7.124E+09 N/C2
- e) 7.836E+09 N/C2
3)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 3.228E+00 V/m2
- b) 3.551E+00 V/m2
- c) 3.906E+00 V/m2
- d) 4.297E+00 V/m2
- e) 4.727E+00 V/m2
KEY:QB:Ch 5:V0
[edit | edit source]QB153086031104
- -a) 5.914E+01 degrees
- -b) 6.506E+01 degrees
- +c) 7.157E+01 degrees
- -d) 7.872E+01 degrees
- -e) 8.659E+01 degrees
- +a) 5.352E+09 N/C2
- -b) 5.887E+09 N/C2
- -c) 6.476E+09 N/C2
- -d) 7.124E+09 N/C2
- -e) 7.836E+09 N/C2
3)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 3.228E+00 V/m2
- -b) 3.551E+00 V/m2
- -c) 3.906E+00 V/m2
- -d) 4.297E+00 V/m2
- +e) 4.727E+00 V/m2
QB:Ch 5:V1
[edit | edit source]QB153086031104
- a) 4.357E+01 degrees
- b) 4.793E+01 degrees
- c) 5.272E+01 degrees
- d) 5.799E+01 degrees
- e) 6.379E+01 degrees
- a) 6.925E+09 N/C2
- b) 7.617E+09 N/C2
- c) 8.379E+09 N/C2
- d) 9.217E+09 N/C2
- e) 1.014E+10 N/C2
3)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 5.134E-01 V/m2
- b) 5.648E-01 V/m2
- c) 6.212E-01 V/m2
- d) 6.834E-01 V/m2
- e) 7.517E-01 V/m2
KEY:QB:Ch 5:V1
[edit | edit source]QB153086031104
- -a) 4.357E+01 degrees
- -b) 4.793E+01 degrees
- -c) 5.272E+01 degrees
- +d) 5.799E+01 degrees
- -e) 6.379E+01 degrees
- -a) 6.925E+09 N/C2
- -b) 7.617E+09 N/C2
- +c) 8.379E+09 N/C2
- -d) 9.217E+09 N/C2
- -e) 1.014E+10 N/C2
3)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 5.134E-01 V/m2
- +b) 5.648E-01 V/m2
- -c) 6.212E-01 V/m2
- -d) 6.834E-01 V/m2
- -e) 7.517E-01 V/m2
QB:Ch 5:V2
[edit | edit source]QB153086031104
1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 8.933E+00 V/m2
- b) 9.826E+00 V/m2
- c) 1.081E+01 V/m2
- d) 1.189E+01 V/m2
- e) 1.308E+01 V/m2
- a) 4.357E+01 degrees
- b) 4.793E+01 degrees
- c) 5.272E+01 degrees
- d) 5.799E+01 degrees
- e) 6.379E+01 degrees
- a) 5.581E+09 N/C2
- b) 6.139E+09 N/C2
- c) 6.753E+09 N/C2
- d) 7.428E+09 N/C2
- e) 8.171E+09 N/C2
KEY:QB:Ch 5:V2
[edit | edit source]QB153086031104
1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 8.933E+00 V/m2
- -b) 9.826E+00 V/m2
- +c) 1.081E+01 V/m2
- -d) 1.189E+01 V/m2
- -e) 1.308E+01 V/m2
- -a) 4.357E+01 degrees
- -b) 4.793E+01 degrees
- -c) 5.272E+01 degrees
- +d) 5.799E+01 degrees
- -e) 6.379E+01 degrees
- -a) 5.581E+09 N/C2
- -b) 6.139E+09 N/C2
- +c) 6.753E+09 N/C2
- -d) 7.428E+09 N/C2
- -e) 8.171E+09 N/C2
QB:Ch 6:V0
[edit | edit source]QB153086031104
1) What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the z=0 plane with corners at (x,y)= (x=0, y=0), (x=9, y=0), (x=0, y=9), and (x=9, y=9), where x and y are measured in meters. The electric field is,
- a) 2.210E+04 V·m
- b) 2.431E+04 V·m
- c) 2.674E+04 V·m
- d) 2.941E+04 V·m
- e) 3.235E+04 V·m
- a) 2.134E+01 N·m2/C
- b) 2.347E+01 N·m2/C
- c) 2.582E+01 N·m2/C
- d) 2.840E+01 N·m2/C
- e) 3.124E+01 N·m2/C
3) A non-conducting sphere of radius R=1.7 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.5 (r≤R) where a=3 nC·m-1.5. What is the magnitude of the electric field at a distance of 0.64 m from the center?
- a) 2.039E+01 N/C
- b) 2.243E+01 N/C
- c) 2.467E+01 N/C
- d) 2.714E+01 N/C
- e) 2.985E+01 N/C
KEY:QB:Ch 6:V0
[edit | edit source]QB153086031104
1) What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the z=0 plane with corners at (x,y)= (x=0, y=0), (x=9, y=0), (x=0, y=9), and (x=9, y=9), where x and y are measured in meters. The electric field is,
- -a) 2.210E+04 V·m
- +b) 2.431E+04 V·m
- -c) 2.674E+04 V·m
- -d) 2.941E+04 V·m
- -e) 3.235E+04 V·m
- -a) 2.134E+01 N·m2/C
- -b) 2.347E+01 N·m2/C
- +c) 2.582E+01 N·m2/C
- -d) 2.840E+01 N·m2/C
- -e) 3.124E+01 N·m2/C
3) A non-conducting sphere of radius R=1.7 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.5 (r≤R) where a=3 nC·m-1.5. What is the magnitude of the electric field at a distance of 0.64 m from the center?
- -a) 2.039E+01 N/C
- -b) 2.243E+01 N/C
- +c) 2.467E+01 N/C
- -d) 2.714E+01 N/C
- -e) 2.985E+01 N/C
QB:Ch 6:V1
[edit | edit source]QB153086031104
- a) 3.959E+01 N·m2/C
- b) 4.354E+01 N·m2/C
- c) 4.790E+01 N·m2/C
- d) 5.269E+01 N·m2/C
- e) 5.796E+01 N·m2/C
2) What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the z=0 plane with corners at (x,y)= (x=0, y=0), (x=5, y=0), (x=0, y=7), and (x=5, y=7), where x and y are measured in meters. The electric field is,
- a) 4.286E+03 V·m
- b) 4.714E+03 V·m
- c) 5.186E+03 V·m
- d) 5.704E+03 V·m
- e) 6.275E+03 V·m
3) A non-conducting sphere of radius R=3.5 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.5 (r≤R) where a=2 nC·m-1.5. What is the magnitude of the electric field at a distance of 2.2 m from the center?
- a) 3.604E+02 N/C
- b) 3.964E+02 N/C
- c) 4.360E+02 N/C
- d) 4.796E+02 N/C
- e) 5.276E+02 N/C
KEY:QB:Ch 6:V1
[edit | edit source]QB153086031104
- -a) 3.959E+01 N·m2/C
- -b) 4.354E+01 N·m2/C
- -c) 4.790E+01 N·m2/C
- +d) 5.269E+01 N·m2/C
- -e) 5.796E+01 N·m2/C
2) What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the z=0 plane with corners at (x,y)= (x=0, y=0), (x=5, y=0), (x=0, y=7), and (x=5, y=7), where x and y are measured in meters. The electric field is,
- -a) 4.286E+03 V·m
- -b) 4.714E+03 V·m
- +c) 5.186E+03 V·m
- -d) 5.704E+03 V·m
- -e) 6.275E+03 V·m
3) A non-conducting sphere of radius R=3.5 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.5 (r≤R) where a=2 nC·m-1.5. What is the magnitude of the electric field at a distance of 2.2 m from the center?
- +a) 3.604E+02 N/C
- -b) 3.964E+02 N/C
- -c) 4.360E+02 N/C
- -d) 4.796E+02 N/C
- -e) 5.276E+02 N/C
QB:Ch 6:V2
[edit | edit source]QB153086031104
1) A non-conducting sphere of radius R=2.9 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.5 (r≤R) where a=2 nC·m-1.5. What is the magnitude of the electric field at a distance of 1.5 m from the center?
- a) 1.383E+02 N/C
- b) 1.522E+02 N/C
- c) 1.674E+02 N/C
- d) 1.841E+02 N/C
- e) 2.025E+02 N/C
- a) 5.408E+01 N·m2/C
- b) 5.949E+01 N·m2/C
- c) 6.544E+01 N·m2/C
- d) 7.198E+01 N·m2/C
- e) 7.918E+01 N·m2/C
3) What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the z=0 plane with corners at (x,y)= (x=0, y=0), (x=5, y=0), (x=0, y=7), and (x=5, y=7), where x and y are measured in meters. The electric field is,
- a) 4.286E+03 V·m
- b) 4.714E+03 V·m
- c) 5.186E+03 V·m
- d) 5.704E+03 V·m
- e) 6.275E+03 V·m
KEY:QB:Ch 6:V2
[edit | edit source]QB153086031104
1) A non-conducting sphere of radius R=2.9 m has a non-uniform charge density that varies with the distnce from its center as given by ρ(r)=ar1.5 (r≤R) where a=2 nC·m-1.5. What is the magnitude of the electric field at a distance of 1.5 m from the center?
- +a) 1.383E+02 N/C
- -b) 1.522E+02 N/C
- -c) 1.674E+02 N/C
- -d) 1.841E+02 N/C
- -e) 2.025E+02 N/C
- -a) 5.408E+01 N·m2/C
- +b) 5.949E+01 N·m2/C
- -c) 6.544E+01 N·m2/C
- -d) 7.198E+01 N·m2/C
- -e) 7.918E+01 N·m2/C
3) What is the magnetude (absolute value) of the electric flux through a rectangle that occupies the z=0 plane with corners at (x,y)= (x=0, y=0), (x=5, y=0), (x=0, y=7), and (x=5, y=7), where x and y are measured in meters. The electric field is,
- -a) 4.286E+03 V·m
- -b) 4.714E+03 V·m
- +c) 5.186E+03 V·m
- -d) 5.704E+03 V·m
- -e) 6.275E+03 V·m
QB:Ch 7:V0
[edit | edit source]QB153086031104
- a) 3.814E+02 V
- b) 4.195E+02 V
- c) 4.615E+02 V
- d) 5.077E+02 V
- e) 5.584E+02 V
2) When a 7.1 V battery operates a 1.8 W bulb, how many electrons pass through it each second?
- a) 1.439E+18 electrons
- b) 1.582E+18 electrons
- c) 1.741E+18 electrons
- d) 1.915E+18 electrons
- e) 2.106E+18 electrons
- a) 1.604E-01 N
- b) 1.765E-01 N
- c) 1.941E-01 N
- d) 2.135E-01 N
- e) 2.349E-01 N
KEY:QB:Ch 7:V0
[edit | edit source]QB153086031104
- -a) 3.814E+02 V
- -b) 4.195E+02 V
- +c) 4.615E+02 V
- -d) 5.077E+02 V
- -e) 5.584E+02 V
2) When a 7.1 V battery operates a 1.8 W bulb, how many electrons pass through it each second?
- -a) 1.439E+18 electrons
- +b) 1.582E+18 electrons
- -c) 1.741E+18 electrons
- -d) 1.915E+18 electrons
- -e) 2.106E+18 electrons
- -a) 1.604E-01 N
- -b) 1.765E-01 N
- +c) 1.941E-01 N
- -d) 2.135E-01 N
- -e) 2.349E-01 N
QB:Ch 7:V1
[edit | edit source]QB153086031104
- a) 8.206E-01 N
- b) 9.027E-01 N
- c) 9.930E-01 N
- d) 1.092E+00 N
- e) 1.201E+00 N
2) When a 7.78 V battery operates a 1.35 W bulb, how many electrons pass through it each second?
- a) 7.397E+17 electrons
- b) 8.137E+17 electrons
- c) 8.951E+17 electrons
- d) 9.846E+17 electrons
- e) 1.083E+18 electrons
- a) 7.017E+02 V
- b) 7.718E+02 V
- c) 8.490E+02 V
- d) 9.339E+02 V
- e) 1.027E+03 V
KEY:QB:Ch 7:V1
[edit | edit source]QB153086031104
- -a) 8.206E-01 N
- +b) 9.027E-01 N
- -c) 9.930E-01 N
- -d) 1.092E+00 N
- -e) 1.201E+00 N
2) When a 7.78 V battery operates a 1.35 W bulb, how many electrons pass through it each second?
- -a) 7.397E+17 electrons
- -b) 8.137E+17 electrons
- -c) 8.951E+17 electrons
- -d) 9.846E+17 electrons
- +e) 1.083E+18 electrons
- -a) 7.017E+02 V
- +b) 7.718E+02 V
- -c) 8.490E+02 V
- -d) 9.339E+02 V
- -e) 1.027E+03 V
QB:Ch 7:V2
[edit | edit source]QB153086031104
- a) 1.355E-01 N
- b) 1.491E-01 N
- c) 1.640E-01 N
- d) 1.804E-01 N
- e) 1.984E-01 N
- a) 2.164E+02 V
- b) 2.381E+02 V
- c) 2.619E+02 V
- d) 2.880E+02 V
- e) 3.168E+02 V
3) When a 3.8 V battery operates a 1.67 W bulb, how many electrons pass through it each second?
- a) 1.873E+18 electrons
- b) 2.061E+18 electrons
- c) 2.267E+18 electrons
- d) 2.494E+18 electrons
- e) 2.743E+18 electrons
KEY:QB:Ch 7:V2
[edit | edit source]QB153086031104
- +a) 1.355E-01 N
- -b) 1.491E-01 N
- -c) 1.640E-01 N
- -d) 1.804E-01 N
- -e) 1.984E-01 N
- -a) 2.164E+02 V
- -b) 2.381E+02 V
- -c) 2.619E+02 V
- +d) 2.880E+02 V
- -e) 3.168E+02 V
3) When a 3.8 V battery operates a 1.67 W bulb, how many electrons pass through it each second?
- -a) 1.873E+18 electrons
- -b) 2.061E+18 electrons
- -c) 2.267E+18 electrons
- -d) 2.494E+18 electrons
- +e) 2.743E+18 electrons
QB:Ch 8:V0
[edit | edit source]QB153086031104
- a) 5.474E+01 μC
- b) 6.022E+01 μC
- c) 6.624E+01 μC
- d) 7.287E+01 μC
- e) 8.015E+01 μC
- a) 6.890E+00 μJ
- b) 7.579E+00 μJ
- c) 8.337E+00 μJ
- d) 9.171E+00 μJ
- e) 1.009E+01 μJ
- a) 4.220E+00 μF
- b) 4.642E+00 μF
- c) 5.106E+00 μF
- d) 5.616E+00 μF
- e) 6.178E+00 μF
KEY:QB:Ch 8:V0
[edit | edit source]QB153086031104
- -a) 5.474E+01 μC
- -b) 6.022E+01 μC
- -c) 6.624E+01 μC
- +d) 7.287E+01 μC
- -e) 8.015E+01 μC
- -a) 6.890E+00 μJ
- -b) 7.579E+00 μJ
- -c) 8.337E+00 μJ
- -d) 9.171E+00 μJ
- +e) 1.009E+01 μJ
- +a) 4.220E+00 μF
- -b) 4.642E+00 μF
- -c) 5.106E+00 μF
- -d) 5.616E+00 μF
- -e) 6.178E+00 μF
QB:Ch 8:V1
[edit | edit source]QB153086031104
- a) 4.220E+00 μF
- b) 4.642E+00 μF
- c) 5.106E+00 μF
- d) 5.616E+00 μF
- e) 6.178E+00 μF
- a) 1.292E+01 μJ
- b) 1.421E+01 μJ
- c) 1.563E+01 μJ
- d) 1.719E+01 μJ
- e) 1.891E+01 μJ
- a) 6.011E+01 μC
- b) 6.613E+01 μC
- c) 7.274E+01 μC
- d) 8.001E+01 μC
- e) 8.801E+01 μC
KEY:QB:Ch 8:V1
[edit | edit source]QB153086031104
- +a) 4.220E+00 μF
- -b) 4.642E+00 μF
- -c) 5.106E+00 μF
- -d) 5.616E+00 μF
- -e) 6.178E+00 μF
- -a) 1.292E+01 μJ
- -b) 1.421E+01 μJ
- -c) 1.563E+01 μJ
- +d) 1.719E+01 μJ
- -e) 1.891E+01 μJ
- -a) 6.011E+01 μC
- +b) 6.613E+01 μC
- -c) 7.274E+01 μC
- -d) 8.001E+01 μC
- -e) 8.801E+01 μC
QB:Ch 8:V2
[edit | edit source]QB153086031104
- a) 4.489E+00 μF
- b) 4.938E+00 μF
- c) 5.432E+00 μF
- d) 5.975E+00 μF
- e) 6.573E+00 μF
- a) 4.809E+01 μC
- b) 5.290E+01 μC
- c) 5.819E+01 μC
- d) 6.401E+01 μC
- e) 7.041E+01 μC
- a) 1.292E+01 μJ
- b) 1.421E+01 μJ
- c) 1.563E+01 μJ
- d) 1.719E+01 μJ
- e) 1.891E+01 μJ
KEY:QB:Ch 8:V2
[edit | edit source]QB153086031104
- -a) 4.489E+00 μF
- -b) 4.938E+00 μF
- +c) 5.432E+00 μF
- -d) 5.975E+00 μF
- -e) 6.573E+00 μF
- -a) 4.809E+01 μC
- +b) 5.290E+01 μC
- -c) 5.819E+01 μC
- -d) 6.401E+01 μC
- -e) 7.041E+01 μC
- -a) 1.292E+01 μJ
- -b) 1.421E+01 μJ
- -c) 1.563E+01 μJ
- +d) 1.719E+01 μJ
- -e) 1.891E+01 μJ
QB:Ch 9:V0
[edit | edit source]QB153086031104
1) Imagine a substance could be made into a very hot filament. Suppose the resitance is 2.61 Ω at a temperature of 92°C and that the temperature coefficient of expansion is 4.260E-03 (°C)−1). What is the resistance at a temperature of 422 °C?
- a) 6.279E+00 Ω
- b) 6.593E+00 Ω
- c) 6.923E+00 Ω
- d) 7.269E+00 Ω
- e) 7.632E+00 Ω
2) A device requires consumes 84 W of power and requires 3.66 A of current which is supplied by a single core 10-guage (2.588 mm diameter) wire. Find the magnitude of the average current density.
- a) 5.751E+05 A/m2
- b) 6.326E+05 A/m2
- c) 6.958E+05 A/m2
- d) 7.654E+05 A/m2
- e) 8.419E+05 A/m2
3) Calculate the resistance of a 12-gauge copper wire that is 48 m long and carries a current of 50 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.
- a) 2.215E-01 Ω
- b) 2.436E-01 Ω
- c) 2.680E-01 Ω
- d) 2.948E-01 Ω
- e) 3.243E-01 Ω
KEY:QB:Ch 9:V0
[edit | edit source]QB153086031104
1) Imagine a substance could be made into a very hot filament. Suppose the resitance is 2.61 Ω at a temperature of 92°C and that the temperature coefficient of expansion is 4.260E-03 (°C)−1). What is the resistance at a temperature of 422 °C?
- +a) 6.279E+00 Ω
- -b) 6.593E+00 Ω
- -c) 6.923E+00 Ω
- -d) 7.269E+00 Ω
- -e) 7.632E+00 Ω
2) A device requires consumes 84 W of power and requires 3.66 A of current which is supplied by a single core 10-guage (2.588 mm diameter) wire. Find the magnitude of the average current density.
- -a) 5.751E+05 A/m2
- -b) 6.326E+05 A/m2
- +c) 6.958E+05 A/m2
- -d) 7.654E+05 A/m2
- -e) 8.419E+05 A/m2
3) Calculate the resistance of a 12-gauge copper wire that is 48 m long and carries a current of 50 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.
- -a) 2.215E-01 Ω
- +b) 2.436E-01 Ω
- -c) 2.680E-01 Ω
- -d) 2.948E-01 Ω
- -e) 3.243E-01 Ω
QB:Ch 9:V1
[edit | edit source]QB153086031104
1) Calculate the resistance of a 12-gauge copper wire that is 19 m long and carries a current of 59 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.
- a) 7.970E-02 Ω
- b) 8.767E-02 Ω
- c) 9.644E-02 Ω
- d) 1.061E-01 Ω
- e) 1.167E-01 Ω
2) A device requires consumes 81 W of power and requires 2.34 A of current which is supplied by a single core 10-guage (2.588 mm diameter) wire. Find the magnitude of the average current density.
- a) 3.342E+05 A/m2
- b) 3.677E+05 A/m2
- c) 4.044E+05 A/m2
- d) 4.449E+05 A/m2
- e) 4.894E+05 A/m2
3) Imagine a substance could be made into a very hot filament. Suppose the resitance is 1.95 Ω at a temperature of 96°C and that the temperature coefficient of expansion is 4.400E-03 (°C)−1). What is the resistance at a temperature of 469 °C?
- a) 4.449E+00 Ω
- b) 4.672E+00 Ω
- c) 4.905E+00 Ω
- d) 5.150E+00 Ω
- e) 5.408E+00 Ω
KEY:QB:Ch 9:V1
[edit | edit source]QB153086031104
1) Calculate the resistance of a 12-gauge copper wire that is 19 m long and carries a current of 59 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.
- -a) 7.970E-02 Ω
- -b) 8.767E-02 Ω
- +c) 9.644E-02 Ω
- -d) 1.061E-01 Ω
- -e) 1.167E-01 Ω
2) A device requires consumes 81 W of power and requires 2.34 A of current which is supplied by a single core 10-guage (2.588 mm diameter) wire. Find the magnitude of the average current density.
- -a) 3.342E+05 A/m2
- -b) 3.677E+05 A/m2
- -c) 4.044E+05 A/m2
- +d) 4.449E+05 A/m2
- -e) 4.894E+05 A/m2
3) Imagine a substance could be made into a very hot filament. Suppose the resitance is 1.95 Ω at a temperature of 96°C and that the temperature coefficient of expansion is 4.400E-03 (°C)−1). What is the resistance at a temperature of 469 °C?
- -a) 4.449E+00 Ω
- -b) 4.672E+00 Ω
- -c) 4.905E+00 Ω
- +d) 5.150E+00 Ω
- -e) 5.408E+00 Ω
QB:Ch 9:V2
[edit | edit source]QB153086031104
1) Imagine a substance could be made into a very hot filament. Suppose the resitance is 2.61 Ω at a temperature of 92°C and that the temperature coefficient of expansion is 4.260E-03 (°C)−1). What is the resistance at a temperature of 422 °C?
- a) 6.279E+00 Ω
- b) 6.593E+00 Ω
- c) 6.923E+00 Ω
- d) 7.269E+00 Ω
- e) 7.632E+00 Ω
2) Calculate the resistance of a 12-gauge copper wire that is 19 m long and carries a current of 59 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.
- a) 7.970E-02 Ω
- b) 8.767E-02 Ω
- c) 9.644E-02 Ω
- d) 1.061E-01 Ω
- e) 1.167E-01 Ω
3) A device requires consumes 103 W of power and requires 6.3 A of current which is supplied by a single core 10-guage (2.588 mm diameter) wire. Find the magnitude of the average current density.
- a) 8.999E+05 A/m2
- b) 9.899E+05 A/m2
- c) 1.089E+06 A/m2
- d) 1.198E+06 A/m2
- e) 1.317E+06 A/m2
KEY:QB:Ch 9:V2
[edit | edit source]QB153086031104
1) Imagine a substance could be made into a very hot filament. Suppose the resitance is 2.61 Ω at a temperature of 92°C and that the temperature coefficient of expansion is 4.260E-03 (°C)−1). What is the resistance at a temperature of 422 °C?
- +a) 6.279E+00 Ω
- -b) 6.593E+00 Ω
- -c) 6.923E+00 Ω
- -d) 7.269E+00 Ω
- -e) 7.632E+00 Ω
2) Calculate the resistance of a 12-gauge copper wire that is 19 m long and carries a current of 59 mA. The resistivity of copper is 1.680E-08 Ω·m and 12-gauge wire as a cross-sectional area of 3.31 mm2.
- -a) 7.970E-02 Ω
- -b) 8.767E-02 Ω
- +c) 9.644E-02 Ω
- -d) 1.061E-01 Ω
- -e) 1.167E-01 Ω
3) A device requires consumes 103 W of power and requires 6.3 A of current which is supplied by a single core 10-guage (2.588 mm diameter) wire. Find the magnitude of the average current density.
- -a) 8.999E+05 A/m2
- -b) 9.899E+05 A/m2
- -c) 1.089E+06 A/m2
- +d) 1.198E+06 A/m2
- -e) 1.317E+06 A/m2
QB:Ch 10:V0
[edit | edit source]QB153086031104
1) A battery with a terminal voltage of 8.72 V is connected to a circuit consisting of 2 15.8 Ω resistors and one 9.58 Ω resistor. What is the voltage drop across the 9.58 Ω resistor?
- a) 1.677E+00 V
- b) 1.844E+00 V
- c) 2.029E+00 V
- d) 2.231E+00 V
- e) 2.455E+00 V
- a) 9.571E+00 s
- b) 1.053E+01 s
- c) 1.158E+01 s
- d) 1.274E+01 s
- e) 1.401E+01 s
- a) 3.890E+00 V
- b) 4.279E+00 V
- c) 4.707E+00 V
- d) 5.178E+00 V
- e) 5.695E+00 V
KEY:QB:Ch 10:V0
[edit | edit source]QB153086031104
1) A battery with a terminal voltage of 8.72 V is connected to a circuit consisting of 2 15.8 Ω resistors and one 9.58 Ω resistor. What is the voltage drop across the 9.58 Ω resistor?
- -a) 1.677E+00 V
- -b) 1.844E+00 V
- +c) 2.029E+00 V
- -d) 2.231E+00 V
- -e) 2.455E+00 V
- -a) 9.571E+00 s
- -b) 1.053E+01 s
- +c) 1.158E+01 s
- -d) 1.274E+01 s
- -e) 1.401E+01 s
- -a) 3.890E+00 V
- -b) 4.279E+00 V
- -c) 4.707E+00 V
- +d) 5.178E+00 V
- -e) 5.695E+00 V
QB:Ch 10:V1
[edit | edit source]QB153086031104
- a) 2.064E+01 V
- b) 2.270E+01 V
- c) 2.497E+01 V
- d) 2.747E+01 V
- e) 3.021E+01 V
- a) 1.296E+01 s
- b) 1.425E+01 s
- c) 1.568E+01 s
- d) 1.725E+01 s
- e) 1.897E+01 s
3) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.2 Ω resistor. What is the voltage drop across the 10.2 Ω resistor?
- a) 2.074E+00 V
- b) 2.282E+00 V
- c) 2.510E+00 V
- d) 2.761E+00 V
- e) 3.037E+00 V
KEY:QB:Ch 10:V1
[edit | edit source]QB153086031104
- +a) 2.064E+01 V
- -b) 2.270E+01 V
- -c) 2.497E+01 V
- -d) 2.747E+01 V
- -e) 3.021E+01 V
- -a) 1.296E+01 s
- -b) 1.425E+01 s
- +c) 1.568E+01 s
- -d) 1.725E+01 s
- -e) 1.897E+01 s
3) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.2 Ω resistor. What is the voltage drop across the 10.2 Ω resistor?
- -a) 2.074E+00 V
- -b) 2.282E+00 V
- +c) 2.510E+00 V
- -d) 2.761E+00 V
- -e) 3.037E+00 V
QB:Ch 10:V2
[edit | edit source]QB153086031104
- a) 9.718E+00 s
- b) 1.069E+01 s
- c) 1.176E+01 s
- d) 1.293E+01 s
- e) 1.423E+01 s
- a) 2.064E+01 V
- b) 2.270E+01 V
- c) 2.497E+01 V
- d) 2.747E+01 V
- e) 3.021E+01 V
3) A battery with a terminal voltage of 8.01 V is connected to a circuit consisting of 3 22.1 Ω resistors and one 14.5 Ω resistor. What is the voltage drop across the 14.5 Ω resistor?
- a) 9.818E-01 V
- b) 1.080E+00 V
- c) 1.188E+00 V
- d) 1.307E+00 V
- e) 1.437E+00 V
KEY:QB:Ch 10:V2
[edit | edit source]QB153086031104
- -a) 9.718E+00 s
- -b) 1.069E+01 s
- +c) 1.176E+01 s
- -d) 1.293E+01 s
- -e) 1.423E+01 s
- +a) 2.064E+01 V
- -b) 2.270E+01 V
- -c) 2.497E+01 V
- -d) 2.747E+01 V
- -e) 3.021E+01 V
3) A battery with a terminal voltage of 8.01 V is connected to a circuit consisting of 3 22.1 Ω resistors and one 14.5 Ω resistor. What is the voltage drop across the 14.5 Ω resistor?
- -a) 9.818E-01 V
- -b) 1.080E+00 V
- -c) 1.188E+00 V
- -d) 1.307E+00 V
- +e) 1.437E+00 V
QB:Ch 11:V0
[edit | edit source]QB153086031104
1) A circular current loop of radius 1.11 cm carries a current of 4.0 mA. What is the magnitude of the torque if the dipole is oriented at 68 ° to a uniform magnetic fied of 0.173 T?
- a) 1.866E-07 N m
- b) 2.052E-07 N m
- c) 2.258E-07 N m
- d) 2.484E-07 N m
- e) 2.732E-07 N m
2) A charged particle in a magnetic field of 3.820E-04 T is moving perpendicular to the magnetic field with a speed of 3.890E+05 m/s. What is the period of orbit if orbital radius is 0.718 m?
- a) 8.713E-06 s
- b) 9.584E-06 s
- c) 1.054E-05 s
- d) 1.160E-05 s
- e) 1.276E-05 s
3) A 76 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.367 T. What current is required to maintain this balance?
- a) 3.432E-01 A
- b) 3.775E-01 A
- c) 4.152E-01 A
- d) 4.568E-01 A
- e) 5.024E-01 A
KEY:QB:Ch 11:V0
[edit | edit source]QB153086031104
1) A circular current loop of radius 1.11 cm carries a current of 4.0 mA. What is the magnitude of the torque if the dipole is oriented at 68 ° to a uniform magnetic fied of 0.173 T?
- -a) 1.866E-07 N m
- -b) 2.052E-07 N m
- -c) 2.258E-07 N m
- +d) 2.484E-07 N m
- -e) 2.732E-07 N m
2) A charged particle in a magnetic field of 3.820E-04 T is moving perpendicular to the magnetic field with a speed of 3.890E+05 m/s. What is the period of orbit if orbital radius is 0.718 m?
- -a) 8.713E-06 s
- -b) 9.584E-06 s
- -c) 1.054E-05 s
- +d) 1.160E-05 s
- -e) 1.276E-05 s
3) A 76 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.367 T. What current is required to maintain this balance?
- -a) 3.432E-01 A
- -b) 3.775E-01 A
- -c) 4.152E-01 A
- +d) 4.568E-01 A
- -e) 5.024E-01 A
QB:Ch 11:V1
[edit | edit source]QB153086031104
1) A charged particle in a magnetic field of 1.750E-04 T is moving perpendicular to the magnetic field with a speed of 2.330E+05 m/s. What is the period of orbit if orbital radius is 0.893 m?
- a) 2.189E-05 s
- b) 2.408E-05 s
- c) 2.649E-05 s
- d) 2.914E-05 s
- e) 3.205E-05 s
2) A 72 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 14 g, and the magnitude of the magnetic field is 0.54 T. What current is required to maintain this balance?
- a) 2.651E-01 A
- b) 2.916E-01 A
- c) 3.208E-01 A
- d) 3.529E-01 A
- e) 3.882E-01 A
3) A circular current loop of radius 1.88 cm carries a current of 3.41 mA. What is the magnitude of the torque if the dipole is oriented at 62 ° to a uniform magnetic fied of 0.415 T?
- a) 1.387E-06 N m
- b) 1.526E-06 N m
- c) 1.679E-06 N m
- d) 1.847E-06 N m
- e) 2.031E-06 N m
KEY:QB:Ch 11:V1
[edit | edit source]QB153086031104
1) A charged particle in a magnetic field of 1.750E-04 T is moving perpendicular to the magnetic field with a speed of 2.330E+05 m/s. What is the period of orbit if orbital radius is 0.893 m?
- -a) 2.189E-05 s
- +b) 2.408E-05 s
- -c) 2.649E-05 s
- -d) 2.914E-05 s
- -e) 3.205E-05 s
2) A 72 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 14 g, and the magnitude of the magnetic field is 0.54 T. What current is required to maintain this balance?
- -a) 2.651E-01 A
- -b) 2.916E-01 A
- -c) 3.208E-01 A
- +d) 3.529E-01 A
- -e) 3.882E-01 A
3) A circular current loop of radius 1.88 cm carries a current of 3.41 mA. What is the magnitude of the torque if the dipole is oriented at 62 ° to a uniform magnetic fied of 0.415 T?
- +a) 1.387E-06 N m
- -b) 1.526E-06 N m
- -c) 1.679E-06 N m
- -d) 1.847E-06 N m
- -e) 2.031E-06 N m
QB:Ch 11:V2
[edit | edit source]QB153086031104
1) A 92 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 15 g, and the magnitude of the magnetic field is 0.713 T. What current is required to maintain this balance?
- a) 2.037E-01 A
- b) 2.241E-01 A
- c) 2.465E-01 A
- d) 2.712E-01 A
- e) 2.983E-01 A
2) A charged particle in a magnetic field of 3.410E-04 T is moving perpendicular to the magnetic field with a speed of 5.010E+05 m/s. What is the period of orbit if orbital radius is 0.508 m?
- a) 5.792E-06 s
- b) 6.371E-06 s
- c) 7.008E-06 s
- d) 7.709E-06 s
- e) 8.480E-06 s
3) A circular current loop of radius 2.84 cm carries a current of 3.01 mA. What is the magnitude of the torque if the dipole is oriented at 63 ° to a uniform magnetic fied of 0.174 T?
- a) 1.075E-06 N m
- b) 1.182E-06 N m
- c) 1.301E-06 N m
- d) 1.431E-06 N m
- e) 1.574E-06 N m
KEY:QB:Ch 11:V2
[edit | edit source]QB153086031104
1) A 92 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 15 g, and the magnitude of the magnetic field is 0.713 T. What current is required to maintain this balance?
- -a) 2.037E-01 A
- +b) 2.241E-01 A
- -c) 2.465E-01 A
- -d) 2.712E-01 A
- -e) 2.983E-01 A
2) A charged particle in a magnetic field of 3.410E-04 T is moving perpendicular to the magnetic field with a speed of 5.010E+05 m/s. What is the period of orbit if orbital radius is 0.508 m?
- -a) 5.792E-06 s
- +b) 6.371E-06 s
- -c) 7.008E-06 s
- -d) 7.709E-06 s
- -e) 8.480E-06 s
3) A circular current loop of radius 2.84 cm carries a current of 3.01 mA. What is the magnitude of the torque if the dipole is oriented at 63 ° to a uniform magnetic fied of 0.174 T?
- -a) 1.075E-06 N m
- +b) 1.182E-06 N m
- -c) 1.301E-06 N m
- -d) 1.431E-06 N m
- -e) 1.574E-06 N m
QB:Ch 12:V0
[edit | edit source]QB153086031104
1) A solenoid has 9.160E+04 turns wound around a cylinder of diameter 1.64 cm and length 16 m. The current through the coils is 0.873 A. Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral alongthe axis from z=−1.74 cm to z=+4.75 cm
- a) 3.369E-04 T-m
- b) 3.706E-04 T-m
- c) 4.076E-04 T-m
- d) 4.484E-04 T-m
- e) 4.932E-04 T-m
2) Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 2.64 mm from the center of a wire of radius 5 mm if the current is 1A?
- a) 1.920E-05 T
- b) 2.112E-05 T
- c) 2.323E-05 T
- d) 2.556E-05 T
- e) 2.811E-05 T
3) Two loops of wire carry the same current of 14 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.835 m while the other has a radius of 1.29 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.607 m from the first (smaller) loopif the disance between the loops is 1.61 m?
- a) 6.099E-03 T
- b) 6.709E-03 T
- c) 7.380E-03 T
- d) 8.118E-03 T
- e) 8.930E-03 T
KEY:QB:Ch 12:V0
[edit | edit source]QB153086031104
1) A solenoid has 9.160E+04 turns wound around a cylinder of diameter 1.64 cm and length 16 m. The current through the coils is 0.873 A. Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral alongthe axis from z=−1.74 cm to z=+4.75 cm
- -a) 3.369E-04 T-m
- -b) 3.706E-04 T-m
- +c) 4.076E-04 T-m
- -d) 4.484E-04 T-m
- -e) 4.932E-04 T-m
2) Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 2.64 mm from the center of a wire of radius 5 mm if the current is 1A?
- -a) 1.920E-05 T
- +b) 2.112E-05 T
- -c) 2.323E-05 T
- -d) 2.556E-05 T
- -e) 2.811E-05 T
3) Two loops of wire carry the same current of 14 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.835 m while the other has a radius of 1.29 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.607 m from the first (smaller) loopif the disance between the loops is 1.61 m?
- -a) 6.099E-03 T
- -b) 6.709E-03 T
- -c) 7.380E-03 T
- -d) 8.118E-03 T
- +e) 8.930E-03 T
QB:Ch 12:V1
[edit | edit source]QB153086031104
1) Two loops of wire carry the same current of 14 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.835 m while the other has a radius of 1.29 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.607 m from the first (smaller) loopif the disance between the loops is 1.61 m?
- a) 6.099E-03 T
- b) 6.709E-03 T
- c) 7.380E-03 T
- d) 8.118E-03 T
- e) 8.930E-03 T
2) A solenoid has 4.380E+04 turns wound around a cylinder of diameter 1.77 cm and length 16 m. The current through the coils is 0.916 A. Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral alongthe axis from z=−4.39 cm to z=+4.26 cm
- a) 2.478E-04 T-m
- b) 2.726E-04 T-m
- c) 2.998E-04 T-m
- d) 3.298E-04 T-m
- e) 3.628E-04 T-m
3) Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 2.04 mm from the center of a wire of radius 5 mm if the current is 1A?
- a) 1.115E-05 T
- b) 1.226E-05 T
- c) 1.349E-05 T
- d) 1.484E-05 T
- e) 1.632E-05 T
KEY:QB:Ch 12:V1
[edit | edit source]QB153086031104
1) Two loops of wire carry the same current of 14 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.835 m while the other has a radius of 1.29 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.607 m from the first (smaller) loopif the disance between the loops is 1.61 m?
- -a) 6.099E-03 T
- -b) 6.709E-03 T
- -c) 7.380E-03 T
- -d) 8.118E-03 T
- +e) 8.930E-03 T
2) A solenoid has 4.380E+04 turns wound around a cylinder of diameter 1.77 cm and length 16 m. The current through the coils is 0.916 A. Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral alongthe axis from z=−4.39 cm to z=+4.26 cm
- -a) 2.478E-04 T-m
- +b) 2.726E-04 T-m
- -c) 2.998E-04 T-m
- -d) 3.298E-04 T-m
- -e) 3.628E-04 T-m
3) Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 2.04 mm from the center of a wire of radius 5 mm if the current is 1A?
- -a) 1.115E-05 T
- -b) 1.226E-05 T
- -c) 1.349E-05 T
- -d) 1.484E-05 T
- +e) 1.632E-05 T
QB:Ch 12:V2
[edit | edit source]QB153086031104
1) Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 1.86 mm from the center of a wire of radius 5 mm if the current is 1A?
- a) 1.488E-05 T
- b) 1.637E-05 T
- c) 1.800E-05 T
- d) 1.981E-05 T
- e) 2.179E-05 T
2) A solenoid has 8.890E+04 turns wound around a cylinder of diameter 1.32 cm and length 15 m. The current through the coils is 0.297 A. Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral alongthe axis from z=−1.41 cm to z=+2.56 cm
- a) 7.257E-05 T-m
- b) 7.983E-05 T-m
- c) 8.781E-05 T-m
- d) 9.660E-05 T-m
- e) 1.063E-04 T-m
3) Two loops of wire carry the same current of 99 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.798 m while the other has a radius of 1.29 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.394 m from the first (smaller) loopif the disance between the loops is 1.29 m?
- a) 8.291E-02 T
- b) 9.120E-02 T
- c) 1.003E-01 T
- d) 1.104E-01 T
- e) 1.214E-01 T
KEY:QB:Ch 12:V2
[edit | edit source]QB153086031104
1) Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 1.86 mm from the center of a wire of radius 5 mm if the current is 1A?
- +a) 1.488E-05 T
- -b) 1.637E-05 T
- -c) 1.800E-05 T
- -d) 1.981E-05 T
- -e) 2.179E-05 T
2) A solenoid has 8.890E+04 turns wound around a cylinder of diameter 1.32 cm and length 15 m. The current through the coils is 0.297 A. Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral alongthe axis from z=−1.41 cm to z=+2.56 cm
- -a) 7.257E-05 T-m
- -b) 7.983E-05 T-m
- +c) 8.781E-05 T-m
- -d) 9.660E-05 T-m
- -e) 1.063E-04 T-m
3) Two loops of wire carry the same current of 99 kA, and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.798 m while the other has a radius of 1.29 m. What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.394 m from the first (smaller) loopif the disance between the loops is 1.29 m?
- +a) 8.291E-02 T
- -b) 9.120E-02 T
- -c) 1.003E-01 T
- -d) 1.104E-01 T
- -e) 1.214E-01 T
QB:Ch 13:V0
[edit | edit source]QB153086031104
1) A time dependent magnetic field is directed perpendicular to the plane of a circular coil with a radius of 0.706 m. The magnetic field is spatially uniform but decays in time according to , where 9.53 s. What is the current in the coil if the impedance of the coil is 27.4 Ω?
- a) 6.149E-01 A
- b) 6.763E-01 A
- c) 7.440E-01 A
- d) 8.184E-01 A
- e) 9.002E-01 A
2) A square coil has sides that are L= 0.259 m long and is tightly wound with N=628 turns of wire. The resistance of the coil is R=6.51 Ω. The coil is placed in a spacially uniform magnetic field that is directed perpendicular to the face of the coil and whose magnitude is increasing at a rate dB/dt=0.0372 T/s. If R represents the only impedance of the coil, what is the magnitude of the current circulting through it?
- a) 1.809E-01 A
- b) 1.989E-01 A
- c) 2.188E-01 A
- d) 2.407E-01 A
- e) 2.648E-01 A
3) A long solenoid has a radius of 0.447 m and 85 turns per meter; its current decreases with time according to , where 7 A and 23 s−1.What is the induced electric fied at a distance 0.212 m from the axis at time t=0.0819 s ?
- a) 1.893E-04 V/m
- b) 2.082E-04 V/m
- c) 2.290E-04 V/m
- d) 2.519E-04 V/m
- e) 2.771E-04 V/m
KEY:QB:Ch 13:V0
[edit | edit source]QB153086031104
1) A time dependent magnetic field is directed perpendicular to the plane of a circular coil with a radius of 0.706 m. The magnetic field is spatially uniform but decays in time according to , where 9.53 s. What is the current in the coil if the impedance of the coil is 27.4 Ω?
- -a) 6.149E-01 A
- -b) 6.763E-01 A
- -c) 7.440E-01 A
- +d) 8.184E-01 A
- -e) 9.002E-01 A
2) A square coil has sides that are L= 0.259 m long and is tightly wound with N=628 turns of wire. The resistance of the coil is R=6.51 Ω. The coil is placed in a spacially uniform magnetic field that is directed perpendicular to the face of the coil and whose magnitude is increasing at a rate dB/dt=0.0372 T/s. If R represents the only impedance of the coil, what is the magnitude of the current circulting through it?
- -a) 1.809E-01 A
- -b) 1.989E-01 A
- -c) 2.188E-01 A
- +d) 2.407E-01 A
- -e) 2.648E-01 A
3) A long solenoid has a radius of 0.447 m and 85 turns per meter; its current decreases with time according to , where 7 A and 23 s−1.What is the induced electric fied at a distance 0.212 m from the axis at time t=0.0819 s ?
- -a) 1.893E-04 V/m
- -b) 2.082E-04 V/m
- -c) 2.290E-04 V/m
- -d) 2.519E-04 V/m
- +e) 2.771E-04 V/m
QB:Ch 13:V1
[edit | edit source]QB153086031104
1) A time dependent magnetic field is directed perpendicular to the plane of a circular coil with a radius of 0.227 m. The magnetic field is spatially uniform but decays in time according to , where 3.92 s. What is the current in the coil if the impedance of the coil is 22.7 Ω?
- a) 1.082E-01 A
- b) 1.190E-01 A
- c) 1.309E-01 A
- d) 1.440E-01 A
- e) 1.584E-01 A
2) A long solenoid has a radius of 0.845 m and 78 turns per meter; its current decreases with time according to , where 3 A and 20 s−1.What is the induced electric fied at a distance 0.214 m from the axis at time t=0.0655 s ?
- a) 1.160E-04 V/m
- b) 1.276E-04 V/m
- c) 1.403E-04 V/m
- d) 1.544E-04 V/m
- e) 1.698E-04 V/m
3) A square coil has sides that are L= 0.894 m long and is tightly wound with N=255 turns of wire. The resistance of the coil is R=8.83 Ω. The coil is placed in a spacially uniform magnetic field that is directed perpendicular to the face of the coil and whose magnitude is increasing at a rate dB/dt=0.0682 T/s. If R represents the only impedance of the coil, what is the magnitude of the current circulting through it?
- a) 1.301E+00 A
- b) 1.431E+00 A
- c) 1.574E+00 A
- d) 1.732E+00 A
- e) 1.905E+00 A
KEY:QB:Ch 13:V1
[edit | edit source]QB153086031104
1) A time dependent magnetic field is directed perpendicular to the plane of a circular coil with a radius of 0.227 m. The magnetic field is spatially uniform but decays in time according to , where 3.92 s. What is the current in the coil if the impedance of the coil is 22.7 Ω?
- -a) 1.082E-01 A
- +b) 1.190E-01 A
- -c) 1.309E-01 A
- -d) 1.440E-01 A
- -e) 1.584E-01 A
2) A long solenoid has a radius of 0.845 m and 78 turns per meter; its current decreases with time according to , where 3 A and 20 s−1.What is the induced electric fied at a distance 0.214 m from the axis at time t=0.0655 s ?
- -a) 1.160E-04 V/m
- -b) 1.276E-04 V/m
- -c) 1.403E-04 V/m
- -d) 1.544E-04 V/m
- +e) 1.698E-04 V/m
3) A square coil has sides that are L= 0.894 m long and is tightly wound with N=255 turns of wire. The resistance of the coil is R=8.83 Ω. The coil is placed in a spacially uniform magnetic field that is directed perpendicular to the face of the coil and whose magnitude is increasing at a rate dB/dt=0.0682 T/s. If R represents the only impedance of the coil, what is the magnitude of the current circulting through it?
- -a) 1.301E+00 A
- -b) 1.431E+00 A
- +c) 1.574E+00 A
- -d) 1.732E+00 A
- -e) 1.905E+00 A
QB:Ch 13:V2
[edit | edit source]QB153086031104
1) A long solenoid has a radius of 0.447 m and 85 turns per meter; its current decreases with time according to , where 7 A and 23 s−1.What is the induced electric fied at a distance 0.212 m from the axis at time t=0.0819 s ?
- a) 1.893E-04 V/m
- b) 2.082E-04 V/m
- c) 2.290E-04 V/m
- d) 2.519E-04 V/m
- e) 2.771E-04 V/m
2) A time dependent magnetic field is directed perpendicular to the plane of a circular coil with a radius of 0.861 m. The magnetic field is spatially uniform but decays in time according to , where 4.2 s. What is the current in the coil if the impedance of the coil is 19.8 Ω?
- a) 1.751E+00 A
- b) 1.926E+00 A
- c) 2.119E+00 A
- d) 2.331E+00 A
- e) 2.564E+00 A
3) A square coil has sides that are L= 0.727 m long and is tightly wound with N=376 turns of wire. The resistance of the coil is R=5.59 Ω. The coil is placed in a spacially uniform magnetic field that is directed perpendicular to the face of the coil and whose magnitude is increasing at a rate dB/dt=0.0485 T/s. If R represents the only impedance of the coil, what is the magnitude of the current circulting through it?
- a) 1.567E+00 A
- b) 1.724E+00 A
- c) 1.897E+00 A
- d) 2.086E+00 A
- e) 2.295E+00 A
KEY:QB:Ch 13:V2
[edit | edit source]QB153086031104
1) A long solenoid has a radius of 0.447 m and 85 turns per meter; its current decreases with time according to , where 7 A and 23 s−1.What is the induced electric fied at a distance 0.212 m from the axis at time t=0.0819 s ?
- -a) 1.893E-04 V/m
- -b) 2.082E-04 V/m
- -c) 2.290E-04 V/m
- -d) 2.519E-04 V/m
- +e) 2.771E-04 V/m
2) A time dependent magnetic field is directed perpendicular to the plane of a circular coil with a radius of 0.861 m. The magnetic field is spatially uniform but decays in time according to , where 4.2 s. What is the current in the coil if the impedance of the coil is 19.8 Ω?
- -a) 1.751E+00 A
- -b) 1.926E+00 A
- +c) 2.119E+00 A
- -d) 2.331E+00 A
- -e) 2.564E+00 A
3) A square coil has sides that are L= 0.727 m long and is tightly wound with N=376 turns of wire. The resistance of the coil is R=5.59 Ω. The coil is placed in a spacially uniform magnetic field that is directed perpendicular to the face of the coil and whose magnitude is increasing at a rate dB/dt=0.0485 T/s. If R represents the only impedance of the coil, what is the magnitude of the current circulting through it?
- -a) 1.567E+00 A
- +b) 1.724E+00 A
- -c) 1.897E+00 A
- -d) 2.086E+00 A
- -e) 2.295E+00 A
QB:Ch 14:V0
[edit | edit source]QB153086031104
- a) 6.567E-01 V
- b) 7.880E-01 V
- c) 9.456E-01 V
- d) 1.135E+00 V
- e) 1.362E+00 V
2) An induced emf of 7.94V is measured across a coil of 94 closely wound turns while the current throuth it increases uniformly from 0.0 to 5.65A in 0.478s. What is the self-inductance of the coil?
- a) 5.047E-01 H
- b) 5.552E-01 H
- c) 6.107E-01 H
- d) 6.717E-01 H
- e) 7.389E-01 H
3) A washer has an inner diameter of 2.37 cm and an outer diamter of 4.84 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?
- a) 1.570E+00 cm3
- b) 1.727E+00 cm3
- c) 1.900E+00 cm3
- d) 2.090E+00 cm3
- e) 2.299E+00 cm3
KEY:QB:Ch 14:V0
[edit | edit source]QB153086031104
- -a) 6.567E-01 V
- -b) 7.880E-01 V
- -c) 9.456E-01 V
- +d) 1.135E+00 V
- -e) 1.362E+00 V
2) An induced emf of 7.94V is measured across a coil of 94 closely wound turns while the current throuth it increases uniformly from 0.0 to 5.65A in 0.478s. What is the self-inductance of the coil?
- -a) 5.047E-01 H
- -b) 5.552E-01 H
- -c) 6.107E-01 H
- +d) 6.717E-01 H
- -e) 7.389E-01 H
3) A washer has an inner diameter of 2.37 cm and an outer diamter of 4.84 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?
- +a) 1.570E+00 cm3
- -b) 1.727E+00 cm3
- -c) 1.900E+00 cm3
- -d) 2.090E+00 cm3
- -e) 2.299E+00 cm3
QB:Ch 14:V1
[edit | edit source]QB153086031104
- a) 7.635E-01 V
- b) 9.162E-01 V
- c) 1.099E+00 V
- d) 1.319E+00 V
- e) 1.583E+00 V
2) An induced emf of 6.78V is measured across a coil of 58 closely wound turns while the current throuth it increases uniformly from 0.0 to 3.98A in 0.726s. What is the self-inductance of the coil?
- a) 1.022E+00 H
- b) 1.124E+00 H
- c) 1.237E+00 H
- d) 1.360E+00 H
- e) 1.496E+00 H
3) A washer has an inner diameter of 2.75 cm and an outer diamter of 4.62 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?
- a) 6.960E-01 cm3
- b) 7.656E-01 cm3
- c) 8.421E-01 cm3
- d) 9.264E-01 cm3
- e) 1.019E+00 cm3
KEY:QB:Ch 14:V1
[edit | edit source]QB153086031104
- -a) 7.635E-01 V
- -b) 9.162E-01 V
- -c) 1.099E+00 V
- +d) 1.319E+00 V
- -e) 1.583E+00 V
2) An induced emf of 6.78V is measured across a coil of 58 closely wound turns while the current throuth it increases uniformly from 0.0 to 3.98A in 0.726s. What is the self-inductance of the coil?
- -a) 1.022E+00 H
- -b) 1.124E+00 H
- +c) 1.237E+00 H
- -d) 1.360E+00 H
- -e) 1.496E+00 H
3) A washer has an inner diameter of 2.75 cm and an outer diamter of 4.62 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?
- -a) 6.960E-01 cm3
- -b) 7.656E-01 cm3
- +c) 8.421E-01 cm3
- -d) 9.264E-01 cm3
- -e) 1.019E+00 cm3
QB:Ch 14:V2
[edit | edit source]QB153086031104
1) A washer has an inner diameter of 2.46 cm and an outer diamter of 4.24 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?
- a) 7.499E-01 cm3
- b) 8.249E-01 cm3
- c) 9.074E-01 cm3
- d) 9.982E-01 cm3
- e) 1.098E+00 cm3
2) An induced emf of 5.33V is measured across a coil of 77 closely wound turns while the current throuth it increases uniformly from 0.0 to 6.57A in 0.648s. What is the self-inductance of the coil?
- a) 4.779E-01 H
- b) 5.257E-01 H
- c) 5.783E-01 H
- d) 6.361E-01 H
- e) 6.997E-01 H
- a) 3.682E-01 V
- b) 4.418E-01 V
- c) 5.301E-01 V
- d) 6.362E-01 V
- e) 7.634E-01 V
KEY:QB:Ch 14:V2
[edit | edit source]QB153086031104
1) A washer has an inner diameter of 2.46 cm and an outer diamter of 4.24 cm. The thickness is where is measured in cm, , and . What is the volume of the washer?
- -a) 7.499E-01 cm3
- -b) 8.249E-01 cm3
- -c) 9.074E-01 cm3
- -d) 9.982E-01 cm3
- +e) 1.098E+00 cm3
2) An induced emf of 5.33V is measured across a coil of 77 closely wound turns while the current throuth it increases uniformly from 0.0 to 6.57A in 0.648s. What is the self-inductance of the coil?
- -a) 4.779E-01 H
- +b) 5.257E-01 H
- -c) 5.783E-01 H
- -d) 6.361E-01 H
- -e) 6.997E-01 H
- -a) 3.682E-01 V
- -b) 4.418E-01 V
- -c) 5.301E-01 V
- -d) 6.362E-01 V
- +e) 7.634E-01 V
QB:Ch 15:V0
[edit | edit source]QB153086031104
1) The output of an ac generator connected to an RLC series combination has a frequency of 890 Hz and an amplitude of 0.12 V;. If R =8 Ω, L= 8.60E-03H , and C=9.90E-04 F, what is the impedance?
- a) 3.318E+01 Ω
- b) 3.649E+01 Ω
- c) 4.014E+01 Ω
- d) 4.416E+01 Ω
- e) 4.857E+01 Ω
2) An ac generator produces an emf of amplitude 66 V at a frequency of 180 Hz. What is the maximum amplitude of the current if the generator is connected to a 97 mF inductor?
- a) 4.972E-01 A
- b) 5.469E-01 A
- c) 6.016E-01 A
- d) 6.618E-01 A
- e) 7.280E-01 A
3) An RLC series combination is driven with an applied voltage of of V=V0sin(ωt), where V0=0.25 V. The resistance, inductance, and capacitance are R =7 Ω, L= 5.00E-03H , and C=7.70E-04 F, respectively. What is the amplitude of the current?
- a) 2.439E-02 A
- b) 2.683E-02 A
- c) 2.952E-02 A
- d) 3.247E-02 A
- e) 3.571E-02 A
KEY:QB:Ch 15:V0
[edit | edit source]QB153086031104
1) The output of an ac generator connected to an RLC series combination has a frequency of 890 Hz and an amplitude of 0.12 V;. If R =8 Ω, L= 8.60E-03H , and C=9.90E-04 F, what is the impedance?
- -a) 3.318E+01 Ω
- -b) 3.649E+01 Ω
- -c) 4.014E+01 Ω
- -d) 4.416E+01 Ω
- +e) 4.857E+01 Ω
2) An ac generator produces an emf of amplitude 66 V at a frequency of 180 Hz. What is the maximum amplitude of the current if the generator is connected to a 97 mF inductor?
- -a) 4.972E-01 A
- -b) 5.469E-01 A
- +c) 6.016E-01 A
- -d) 6.618E-01 A
- -e) 7.280E-01 A
3) An RLC series combination is driven with an applied voltage of of V=V0sin(ωt), where V0=0.25 V. The resistance, inductance, and capacitance are R =7 Ω, L= 5.00E-03H , and C=7.70E-04 F, respectively. What is the amplitude of the current?
- -a) 2.439E-02 A
- -b) 2.683E-02 A
- -c) 2.952E-02 A
- -d) 3.247E-02 A
- +e) 3.571E-02 A
QB:Ch 15:V1
[edit | edit source]QB153086031104
1) The output of an ac generator connected to an RLC series combination has a frequency of 680 Hz and an amplitude of 0.79 V;. If R =5 Ω, L= 2.40E-03H , and C=9.10E-04 F, what is the impedance?
- a) 8.398E+00 Ω
- b) 9.238E+00 Ω
- c) 1.016E+01 Ω
- d) 1.118E+01 Ω
- e) 1.230E+01 Ω
2) An ac generator produces an emf of amplitude 97 V at a frequency of 64 Hz. What is the maximum amplitude of the current if the generator is connected to a 55 mF inductor?
- a) 4.386E+00 A
- b) 4.824E+00 A
- c) 5.307E+00 A
- d) 5.838E+00 A
- e) 6.421E+00 A
3) An RLC series combination is driven with an applied voltage of of V=V0sin(ωt), where V0=0.83 V. The resistance, inductance, and capacitance are R =4 Ω, L= 4.60E-03H , and C=8.10E-04 F, respectively. What is the amplitude of the current?
- a) 1.417E-01 A
- b) 1.559E-01 A
- c) 1.715E-01 A
- d) 1.886E-01 A
- e) 2.075E-01 A
KEY:QB:Ch 15:V1
[edit | edit source]QB153086031104
1) The output of an ac generator connected to an RLC series combination has a frequency of 680 Hz and an amplitude of 0.79 V;. If R =5 Ω, L= 2.40E-03H , and C=9.10E-04 F, what is the impedance?
- -a) 8.398E+00 Ω
- -b) 9.238E+00 Ω
- -c) 1.016E+01 Ω
- +d) 1.118E+01 Ω
- -e) 1.230E+01 Ω
2) An ac generator produces an emf of amplitude 97 V at a frequency of 64 Hz. What is the maximum amplitude of the current if the generator is connected to a 55 mF inductor?
- +a) 4.386E+00 A
- -b) 4.824E+00 A
- -c) 5.307E+00 A
- -d) 5.838E+00 A
- -e) 6.421E+00 A
3) An RLC series combination is driven with an applied voltage of of V=V0sin(ωt), where V0=0.83 V. The resistance, inductance, and capacitance are R =4 Ω, L= 4.60E-03H , and C=8.10E-04 F, respectively. What is the amplitude of the current?
- -a) 1.417E-01 A
- -b) 1.559E-01 A
- -c) 1.715E-01 A
- -d) 1.886E-01 A
- +e) 2.075E-01 A
QB:Ch 15:V2
[edit | edit source]QB153086031104
1) An RLC series combination is driven with an applied voltage of of V=V0sin(ωt), where V0=0.44 V. The resistance, inductance, and capacitance are R =7 Ω, L= 5.40E-03H , and C=5.70E-04 F, respectively. What is the amplitude of the current?
- a) 4.723E-02 A
- b) 5.195E-02 A
- c) 5.714E-02 A
- d) 6.286E-02 A
- e) 6.914E-02 A
2) An ac generator produces an emf of amplitude 40 V at a frequency of 130 Hz. What is the maximum amplitude of the current if the generator is connected to a 52 mF inductor?
- a) 7.783E-01 A
- b) 8.561E-01 A
- c) 9.417E-01 A
- d) 1.036E+00 A
- e) 1.140E+00 A
3) The output of an ac generator connected to an RLC series combination has a frequency of 910 Hz and an amplitude of 0.88 V;. If R =7 Ω, L= 6.80E-03H , and C=9.60E-04 F, what is the impedance?
- a) 3.575E+01 Ω
- b) 3.933E+01 Ω
- c) 4.326E+01 Ω
- d) 4.758E+01 Ω
- e) 5.234E+01 Ω
KEY:QB:Ch 15:V2
[edit | edit source]QB153086031104
1) An RLC series combination is driven with an applied voltage of of V=V0sin(ωt), where V0=0.44 V. The resistance, inductance, and capacitance are R =7 Ω, L= 5.40E-03H , and C=5.70E-04 F, respectively. What is the amplitude of the current?
- -a) 4.723E-02 A
- -b) 5.195E-02 A
- -c) 5.714E-02 A
- +d) 6.286E-02 A
- -e) 6.914E-02 A
2) An ac generator produces an emf of amplitude 40 V at a frequency of 130 Hz. What is the maximum amplitude of the current if the generator is connected to a 52 mF inductor?
- -a) 7.783E-01 A
- -b) 8.561E-01 A
- +c) 9.417E-01 A
- -d) 1.036E+00 A
- -e) 1.140E+00 A
3) The output of an ac generator connected to an RLC series combination has a frequency of 910 Hz and an amplitude of 0.88 V;. If R =7 Ω, L= 6.80E-03H , and C=9.60E-04 F, what is the impedance?
- -a) 3.575E+01 Ω
- +b) 3.933E+01 Ω
- -c) 4.326E+01 Ω
- -d) 4.758E+01 Ω
- -e) 5.234E+01 Ω
QB:Ch 16:V0
[edit | edit source]QB153086031104
1) A 48 kW radio transmitter on Earth sends it signal to a satellite 130 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 80 kW?
- a) 1.678E+02 km
- b) 1.846E+02 km
- c) 2.031E+02 km
- d) 2.234E+02 km
- e) 2.457E+02 km
- a) 1.894E-02 A
- b) 2.083E-02 A
- c) 2.291E-02 A
- d) 2.520E-02 A
- e) 2.773E-02 A
- a) 4.578E+03 V/m
- b) 5.036E+03 V/m
- c) 5.539E+03 V/m
- d) 6.093E+03 V/m
- e) 6.703E+03 V/m
KEY:QB:Ch 16:V0
[edit | edit source]QB153086031104
1) A 48 kW radio transmitter on Earth sends it signal to a satellite 130 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 80 kW?
- +a) 1.678E+02 km
- -b) 1.846E+02 km
- -c) 2.031E+02 km
- -d) 2.234E+02 km
- -e) 2.457E+02 km
- -a) 1.894E-02 A
- -b) 2.083E-02 A
- -c) 2.291E-02 A
- +d) 2.520E-02 A
- -e) 2.773E-02 A
- -a) 4.578E+03 V/m
- -b) 5.036E+03 V/m
- -c) 5.539E+03 V/m
- +d) 6.093E+03 V/m
- -e) 6.703E+03 V/m
QB:Ch 16:V1
[edit | edit source]QB153086031104
- a) 2.998E-03 A
- b) 3.298E-03 A
- c) 3.628E-03 A
- d) 3.991E-03 A
- e) 4.390E-03 A
- a) 1.505E+03 V/m
- b) 1.656E+03 V/m
- c) 1.821E+03 V/m
- d) 2.003E+03 V/m
- e) 2.204E+03 V/m
3) A 58 kW radio transmitter on Earth sends it signal to a satellite 120 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 88 kW?
- a) 1.111E+02 km
- b) 1.222E+02 km
- c) 1.344E+02 km
- d) 1.478E+02 km
- e) 1.626E+02 km
KEY:QB:Ch 16:V1
[edit | edit source]QB153086031104
- -a) 2.998E-03 A
- -b) 3.298E-03 A
- -c) 3.628E-03 A
- +d) 3.991E-03 A
- -e) 4.390E-03 A
- -a) 1.505E+03 V/m
- +b) 1.656E+03 V/m
- -c) 1.821E+03 V/m
- -d) 2.003E+03 V/m
- -e) 2.204E+03 V/m
3) A 58 kW radio transmitter on Earth sends it signal to a satellite 120 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 88 kW?
- -a) 1.111E+02 km
- -b) 1.222E+02 km
- -c) 1.344E+02 km
- +d) 1.478E+02 km
- -e) 1.626E+02 km
QB:Ch 16:V2
[edit | edit source]QB153086031104
1) A 47 kW radio transmitter on Earth sends it signal to a satellite 130 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 90 kW?
- a) 1.799E+02 km
- b) 1.979E+02 km
- c) 2.177E+02 km
- d) 2.394E+02 km
- e) 2.634E+02 km
- a) 1.841E-02 A
- b) 2.026E-02 A
- c) 2.228E-02 A
- d) 2.451E-02 A
- e) 2.696E-02 A
- a) 7.125E+03 V/m
- b) 7.837E+03 V/m
- c) 8.621E+03 V/m
- d) 9.483E+03 V/m
- e) 1.043E+04 V/m
KEY:QB:Ch 16:V2
[edit | edit source]QB153086031104
1) A 47 kW radio transmitter on Earth sends it signal to a satellite 130 km away. At what distance in the same direction would the signal have the same maximum field strength if the transmitter's output power were increased to 90 kW?
- +a) 1.799E+02 km
- -b) 1.979E+02 km
- -c) 2.177E+02 km
- -d) 2.394E+02 km
- -e) 2.634E+02 km
- -a) 1.841E-02 A
- +b) 2.026E-02 A
- -c) 2.228E-02 A
- -d) 2.451E-02 A
- -e) 2.696E-02 A
- -a) 7.125E+03 V/m
- -b) 7.837E+03 V/m
- -c) 8.621E+03 V/m
- +d) 9.483E+03 V/m
- -e) 1.043E+04 V/m