p-adic norm
Appearance
English
[edit]Noun
[edit]p-adic norm (plural p-adic norms)
- (number theory) A p-adic absolute value, for a given prime number p, the function, denoted |..|p and defined on the rational numbers, such that |0|p = 0 and, for x≠0, |x|p = p-ordp(x), where ordp(x) is the p-adic ordinal of x;[1] the same function, extended to the p-adic numbers ℚp (the completion of the rational numbers with respect to the p-adic ultrametric defined by said absolute value); the same function, further extended to some extension of ℚp (for example, its algebraic closure).
- 2002, M. Ram Murty, Introduction to p-adic Analytic Number Theory, American Mathematical Society, page 114,
- By the property of the p-adic norm, (or by the “isosceles triangle principle”) we deduce that .
- 2006, Matti Pitkanen, Topological Geometrodynamics, Luniver Press, page 531,
- The definition of p-adic norm should obey the usual conditions, in particular the requirement that the norm of product is product of norms.
- 2012, Claire C. Ralph, Santiago R. Simanca, Arithmetic Differential Operators over the p-adic Integers, Cambridge University Press, page 2:
- Given a prime , we may define the p-adic norm over the field of rational numbers .
- 2002, M. Ram Murty, Introduction to p-adic Analytic Number Theory, American Mathematical Society, page 114,
- (algebra) A norm on a vector space which is defined over a field equipped with a discrete valuation (a generalisation of p-adic absolute value).
- 2006, Kang Zuo, Representations of Fundamental Groups of Algebraic Varieties, Springer, page 20:
- Let be a field with discrete valuation , and be the valuation ring.
Definition 2.3.1 A p-adic norm on vector space over is a function satisfying:
a) and if and only if .
b) for and .
c) for .
If is a p-adic norm and , then the dilation is a p-adic norm, and we denote by the set of dilation classes of p-adic norms on .
Synonyms
[edit]Related terms
[edit]References
[edit]- ^ 2011, Andrew Baker, An Introduction to p-adic Numbers and p-adic Analysis, Definition 2.5
Further reading
[edit]- p-adic order on Wikipedia.Wikipedia
- Absolute value (algebra) on Wikipedia.Wikipedia
- Ostrowski's theorem on Wikipedia.Wikipedia
- p-adic Norm on Wolfram MathWorld