Ir al contenido

Coseno

De Wikipedia, la enciclopedia libre
Coseno

Gráfica de Coseno
Definición cos x
Dominio
Imagen [-1,1]
Cálculo infinitesimal
Derivada -sen x
Función primitiva sen x + c
Función inversa arccos x

En matemáticas, el coseno es una función par y continua con periodo , además una función trascendente. Su nombre se abrevia cos.

En trigonometría, el coseno de un ángulo de un triángulo rectángulo se define como la razón entre el cateto adyacente a dicho ángulo y la hipotenusa:

Esta razón no depende del tamaño del triángulo rectángulo escogido sino que es una función dependiente del ángulo

Si pertenece a la circunferencia de radio uno con centro se tiene:

Ya que .

Esta construcción permite representar el valor del coseno para ángulos no agudos y funciona exactamente igual para los vectores, representando un vector mediante su descomposición en los vectores ortonormales y .

Cálculo por serie de potencias

[editar]

En análisis matemático el coseno es la función que asocia un número real con el valor del coseno del ángulo de amplitud, expresada en radianes, . Es una función trascendente y analítica, cuya expresión en serie de potencias es:

que en sumatorio sería:

En el plano complejo

[editar]

En el plano complejo a través de la fórmula de Euler se tiene que:

Dada la fórmula de Euler:

donde es la base del logaritmo natural, e es la unidad de los números imaginarios.

Mediante las identidades del senos y cosenos aplicado a se tiene también que:

Sumando estas dos ecuaciones se tiene:

donde despejando el coseno se obtiene lo que se quiere.

Representación gráfica

[editar]
Función_Coseno
Gráfica de la función coseno, con el eje X expresado en radianes.

Relaciones trigonométricas

[editar]

El coseno puede relacionarse con otras funciones trigonométricas mediante el uso de identidades trigonométricas.

Por inducción ya que aplicando un número par de veces se llega a todos los valores de k.

Relación entre el seno y el coseno

[editar]

La curva del coseno es la curva del seno desplazada a la izquierda dando lugar a la siguiente expresión:

Coseno de la suma de dos ángulos

[editar]

La demostración está en la sección de identidades trigonométricas.

Coseno del ángulo doble

[editar]
Como:

Bastará con el cambio

Coseno del ángulo mitad

[editar]
Usando las fórmulas:
y

resulta:

Representación de

y aislando :

El cambio corrige el ángulo y se extrae el valor absoluto con signo del seno:

donde .

Suma de funciones como producto

[editar]

La demostración está en la sección de identidades trigonométricas.

Producto de funciones como suma

[editar]

Ángulos para los cuales el coseno se conoce con exactitud

[editar]
Ángulos en Rad (X) Ángulos en Grados (X°) Cos(X)
30°
45°
60°
90°
180°
360°

Tomando los mismos valores para los ángulos con signo opuesto a los ángulos enunciados en la tabla, puesto que el coseno es una función par.


Derivada del coseno

[editar]

Generalizaciones del coseno

[editar]

Véase también

[editar]

Enlaces externos

[editar]