- Main
Federated learning enables big data for rare cancer boundary detection
- Pati, Sarthak;
- Baid, Ujjwal;
- Edwards, Brandon;
- Sheller, Micah;
- Wang, Shih-Han;
- Reina, G Anthony;
- Foley, Patrick;
- Gruzdev, Alexey;
- Karkada, Deepthi;
- Davatzikos, Christos;
- Sako, Chiharu;
- Ghodasara, Satyam;
- Bilello, Michel;
- Mohan, Suyash;
- Vollmuth, Philipp;
- Brugnara, Gianluca;
- Preetha, Chandrakanth J;
- Sahm, Felix;
- Maier-Hein, Klaus;
- Zenk, Maximilian;
- Bendszus, Martin;
- Wick, Wolfgang;
- Calabrese, Evan;
- Rudie, Jeffrey;
- Villanueva-Meyer, Javier;
- Cha, Soonmee;
- Ingalhalikar, Madhura;
- Jadhav, Manali;
- Pandey, Umang;
- Saini, Jitender;
- Garrett, John;
- Larson, Matthew;
- Jeraj, Robert;
- Currie, Stuart;
- Frood, Russell;
- Fatania, Kavi;
- Huang, Raymond Y;
- Chang, Ken;
- Balaña, Carmen;
- Capellades, Jaume;
- Puig, Josep;
- Trenkler, Johannes;
- Pichler, Josef;
- Necker, Georg;
- Haunschmidt, Andreas;
- Meckel, Stephan;
- Shukla, Gaurav;
- Liem, Spencer;
- Alexander, Gregory S;
- Lombardo, Joseph;
- Palmer, Joshua D;
- Flanders, Adam E;
- Dicker, Adam P;
- Sair, Haris I;
- Jones, Craig K;
- Venkataraman, Archana;
- Jiang, Meirui;
- So, Tiffany Y;
- Chen, Cheng;
- Heng, Pheng Ann;
- Dou, Qi;
- Kozubek, Michal;
- Lux, Filip;
- Michálek, Jan;
- Matula, Petr;
- Keřkovský, Miloš;
- Kopřivová, Tereza;
- Dostál, Marek;
- Vybíhal, Václav;
- Vogelbaum, Michael A;
- Mitchell, J Ross;
- Farinhas, Joaquim;
- Maldjian, Joseph A;
- Yogananda, Chandan Ganesh Bangalore;
- Pinho, Marco C;
- Reddy, Divya;
- Holcomb, James;
- Wagner, Benjamin C;
- Ellingson, Benjamin M;
- Cloughesy, Timothy F;
- Raymond, Catalina;
- Oughourlian, Talia;
- Hagiwara, Akifumi;
- Wang, Chencai;
- To, Minh-Son;
- Bhardwaj, Sargam;
- Chong, Chee;
- Agzarian, Marc;
- Falcão, Alexandre Xavier;
- Martins, Samuel B;
- Teixeira, Bernardo CA;
- Sprenger, Flávia;
- Menotti, David;
- Lucio, Diego R;
- LaMontagne, Pamela;
- Marcus, Daniel;
- Wiestler, Benedikt;
- Kofler, Florian;
- Ezhov, Ivan;
- Metz, Marie;
- Jain, Rajan;
- Lee, Matthew;
- Lui, Yvonne W;
- McKinley, Richard;
- Slotboom, Johannes;
- Radojewski, Piotr;
- Meier, Raphael;
- Wiest, Roland;
- Murcia, Derrick;
- Fu, Eric;
- Haas, Rourke;
- Thompson, John;
- Ormond, David Ryan;
- Badve, Chaitra;
- Sloan, Andrew E;
- Vadmal, Vachan;
- Waite, Kristin;
- Colen, Rivka R;
- Pei, Linmin;
- Ak, Murat;
- Srinivasan, Ashok;
- Bapuraj, J Rajiv;
- Rao, Arvind;
- Wang, Nicholas;
- Yoshiaki, Ota;
- Moritani, Toshio;
- Turk, Sevcan;
- Lee, Joonsang;
- Prabhudesai, Snehal;
- Morón, Fanny;
- Mandel, Jacob;
- Kamnitsas, Konstantinos;
- Glocker, Ben;
- Dixon, Luke VM;
- Williams, Matthew;
- Zampakis, Peter;
- Panagiotopoulos, Vasileios;
- Tsiganos, Panagiotis;
- Alexiou, Sotiris;
- Haliassos, Ilias;
- Zacharaki, Evangelia I;
- Moustakas, Konstantinos;
- Kalogeropoulou, Christina;
- Kardamakis, Dimitrios M;
- Choi, Yoon Seong;
- Lee, Seung-Koo;
- Chang, Jong Hee;
- Ahn, Sung Soo;
- Luo, Bing;
- Poisson, Laila;
- Wen, Ning;
- Tiwari, Pallavi;
- Verma, Ruchika;
- Bareja, Rohan;
- Yadav, Ipsa;
- Chen, Jonathan;
- Kumar, Neeraj;
- Smits, Marion;
- van der Voort, Sebastian R;
- Alafandi, Ahmed;
- Incekara, Fatih;
- Wijnenga, Maarten MJ;
- Kapsas, Georgios;
- Gahrmann, Renske;
- Schouten, Joost W;
- Dubbink, Hendrikus J;
- Vincent, Arnaud JPE;
- van den Bent, Martin J;
- French, Pim J;
- Klein, Stefan;
- Yuan, Yading;
- Sharma, Sonam;
- Tseng, Tzu-Chi;
- Adabi, Saba;
- Niclou, Simone P;
- Keunen, Olivier;
- Hau, Ann-Christin;
- Vallières, Martin;
- Fortin, David;
- Lepage, Martin;
- Landman, Bennett;
- Ramadass, Karthik;
- Xu, Kaiwen;
- Chotai, Silky;
- Chambless, Lola B;
- Mistry, Akshitkumar;
- Thompson, Reid C;
- Gusev, Yuriy;
- Bhuvaneshwar, Krithika;
- Sayah, Anousheh;
- Bencheqroun, Camelia;
- Belouali, Anas;
- Madhavan, Subha;
- Booth, Thomas C;
- Chelliah, Alysha;
- Modat, Marc;
- Shuaib, Haris;
- Dragos, Carmen;
- Abayazeed, Aly;
- Kolodziej, Kenneth;
- Hill, Michael;
- Abbassy, Ahmed;
- Gamal, Shady;
- Mekhaimar, Mahmoud;
- Qayati, Mohamed;
- Reyes, Mauricio;
- Park, Ji Eun;
- Yun, Jihye;
- Kim, Ho Sung;
- Mahajan, Abhishek;
- Muzi, Mark;
- Benson, Sean;
- Beets-Tan, Regina GH;
- Teuwen, Jonas;
- Herrera-Trujillo, Alejandro;
- Trujillo, Maria;
- Escobar, William;
- Abello, Ana;
- Bernal, Jose;
- Gómez, Jhon;
- Choi, Joseph;
- Baek, Stephen;
- Kim, Yusung;
- Ismael, Heba;
- Allen, Bryan;
- Buatti, John M;
- Kotrotsou, Aikaterini;
- Li, Hongwei;
- Weiss, Tobias;
- Weller, Michael;
- Bink, Andrea;
- Pouymayou, Bertrand;
- Shaykh, Hassan F;
- Saltz, Joel;
- Prasanna, Prateek;
- Shrestha, Sampurna;
- Mani, Kartik M;
- Payne, David;
- Kurc, Tahsin;
- Pelaez, Enrique;
- Franco-Maldonado, Heydy;
- Loayza, Francis;
- Quevedo, Sebastian;
- Guevara, Pamela;
- Torche, Esteban;
- Mendoza, Cristobal;
- Vera, Franco;
- Ríos, Elvis;
- López, Eduardo;
- Velastin, Sergio A;
- Ogbole, Godwin;
- Soneye, Mayowa;
- Oyekunle, Dotun;
- Odafe-Oyibotha, Olubunmi;
- Osobu, Babatunde;
- Shu’aibu, Mustapha;
- Dorcas, Adeleye;
- Dako, Farouk;
- Simpson, Amber L;
- Hamghalam, Mohammad;
- Peoples, Jacob J;
- Hu, Ricky;
- Tran, Anh;
- Cutler, Danielle;
- Moraes, Fabio Y;
- Boss, Michael A;
- Gimpel, James;
- Veettil, Deepak Kattil;
- Schmidt, Kendall;
- Bialecki, Brian;
- Marella, Sailaja;
- Price, Cynthia;
- Cimino, Lisa;
- Apgar, Charles;
- Shah, Prashant;
- Menze, Bjoern;
- Barnholtz-Sloan, Jill S;
- Martin, Jason;
- Bakas, Spyridon
- et al.
Published Web Location
https://doi.org/10.1038/s41467-022-33407-5Abstract
Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-