پرش به محتوا

کاربر:محک/صفحه تمرین 1

از ویکی‌پدیا، دانشنامهٔ آزاد

نیروگاه تلمبه‌ای-ذخیره‌ای (به انگلیسی: Pumped-storage hydroelectricity به شکل مخفف PSH، یا pumped hydroelectric energy storage به شکل مخفف PHES) نوعی ذخیره انرژی به صورت هیدروالکتریسیته است که توسط سیستم قدرت برای متعادل کردن بار مورد استفاده قرار می‌گیرد. در این روش انرژی پتانسیل گرانشی آب را، به وسیلهٔ پمپاژ آن از یک مخزن در ارتفاع پایین به مخزنی در ارتفاع بالاتر، ذخیره می‌کنند. به‌طور معمول کار پمپاژ آب را با استفاده از مازاد برق تولید شده، که از لحاظ اقتصادی به صرفه است، انجام می‌دهند. هنگامی که تقاضای برق زیاد است، آب ذخیره شده در مخزن بالا رها شده و با استفاده از توربین، انرژی الکتریکی تولید می‌شود. اگرچه در پروسه‌ای که گفته شد، مقدار برق مصرف‌شده و تولیدی نیروگاه تلمبه‌ای ذخیره‌ای تقریباً برابر است، ولی سامانه با فروش برق در زمان اوج مصرف به درآمد بیشتری دست می‌یابد.

نیروگاه تلمبه‌ای یا انرژی را از منابع متناوب (مانند خورشیدی و بادی) و دیگر تجدیدپذیرها دریافت می‌کند، یا برق اضافی منابع پایدار و دائمی (مانند حرارتی و هسته‌ای) را برای زمان‌های تقاضای بالاتر، دریافت کرده و ذخیره می‌کند.[۱][۲] مخازن مورد استفاده در روش تلمبه‌ای-ذخیره‌ای، در مقایسه با سدهای هیدروالکتریکی معمولی که ظرفیت تولید مشابهی دارند، بسیار کوچک هستند و دوره‌های تولیدشان اغلب کمتر از نصف روز است.

نیروگاه تلمبه‌ای-ذخیره‌ای بیشترین ظرفیت را در میان تمامی روش‌های ذخیره انرژی شبکه فراهم می‌کند، و بنابر گزارش پایگاه داده ذخیره انرژی جهانی دپارتمان انرژی ایالات متحده در سال ۲۰۱۷, این روش در بیش از ۹۶٪ تأسیسات ذخیرهٔ انرژی فعال و شناخته شده سراسر جهان را در بر می‌گرفت که در مجموع ظرفیت نامی آن‌ها بیش از ۱۶۸ گیگاوات بوده‌است.[۳] مقدار بازده تبدیل انرژی رفت و برگشتی این نیروگاه‌ها ما بین ۷۰٪ الی ۸۰٪[۴][۵][۶][۷] و در منابعی ۸۷٪ عنوان شده‌است.[۸] ضعف اصلی نیروگاه‌های تلمبه‌ای-ذخیره‌ای ویژگی‌های مورد نیاز مکان ساخت آن‌هاست، که به ارتفاع جغرافیایی بالا و دسترسی به آب محتاج است؛ بنابراین احتمال دارد که سایت‌های مناسب در مناطق تپه ای یا کوهستانی باشند و به‌طور بالقوه در حوزه‌های مناطق طبیعی گردشگری هستند و به این خاطر مسائل اجتماعی و زیست‌محیطی در برابر آن‌ها وجود دارد. بسیاری از پروژه‌هایی که پیشنهاد شده‌اند، حداقل در ایالات متحده، می‌بایست مناطق حساس و توریستی را از بین ببرند. برخی پیشنهادها مبنی بر ایجاد این نوع نیروگاه‌ها در مناطق متروکه (brownfield) وجود دارند که مکان‌هایی مانند معدن‌های بلااستفاده را مناسب این کار می‌دانند.[۹]

کلیات

[ویرایش]

اصول بنیادین

[ویرایش]
مقدار تولید و مصرف یک نیروگاه تلمبه‌ای-ذخیره‌ای طی یک روز؛ نواحی سرخ نشانگر مقادیر تولیدند و نواحی سبز مقدار مصرف نیروگاه را نشان می‌دهند.

این سایت از دو مخزن پایین و بالا تشکیل می‌شود که به نیروگاه متصل هستند. زمان‌هایی که تقاضا کم است، با استفاده از برق ارزان، آب مخزن پایین را به مخزن بالا پمپاژ می‌کنند و در زمان اوج مصرف که برق گران‌بها می‌شود، نیروگاه با رها کردن آب مخزن بالا ژنراتورهایش را می‌چرخاند و برق تولید می‌کند. فرایند ذخیره و تولید برق بسته به مقدار نیاز شبکه تکرار می‌شود.[۱۰][۱۱] در این نیروگاه‌ها توربین‌هایی وجود دارند (معمولاً توربین فرانسیس) که در اوقات لازمه، می‌توانند هر یک از دو عمل پمپاژ آب (به عنوان موتور) یا تبدیل نیروی مکانیکی آب به الکتریسیته (به عنوان ژنراتور) را انجام دهند.

انواع: مخازن طبیعی و مصنوعی

[ویرایش]

در سیستم‌های حلقه‌باز نیروگاه تلمبه‌ای-ذخیره‌ای آب را بدون جریان طبیعی در مخزن بالا ذخیره می‌کنند، در حالی که در سیستم‌های پمپ-بک (pump-back)، ترکیبی از نیروگاه حلقه‌باز و نیروگاه‌های برق آبی مرسوم استفاده می‌شود که در این روش مخزن بالایی توسط جریان‌های طبیعی آب، مانند رودخانه‌ها، تغذیه می‌شود. سدهایی که از روش مرسوم برق آبی بهره می‌برند، ممکن است بتوانند با به تأخیر انداختن جریان خروجی در زمان احتیاج، در شبکه الکتریکی نقش ایفا کنند و مانند یک نیروگاه تلمبه‌ای-ذخیره‌ای عمل کنند.

بهرهٔ اقتصادی

[ویرایش]

با توجه به تلفات تبدیل و تبخیر سطحی آب، انرژی بازیابی می‌تواند ۷۰٪ الی ۸۰٪ یا بیشتر، را بازتولید کند.[۱۲] این تکنیک در حال حاضر به عنوان روشی مقرون به صرفه برای ذخیره مقادیر گستردهٔ انرژی الکتریکی کاربرد دارد، اما هزینهٔ سرمایه‌گذاری و گزینش مکان جغرافیایی مناسب از عوامل دخیل در تصمیم‌گیری برای احداث سایت‌های تلمبه‌ای-ذخیره‌ای هستند.

The relatively low energy density of pumped storage systems requires either large flows and/or large differences in height between reservoirs. The only way to store a significant amount of energy is by having a large body of water located relatively near, but as high above as possible, a second body of water. In some places this occurs naturally, in others one or both bodies of water were man-made. Projects in which both reservoirs are artificial and in which no natural inflows are involved with either reservoir are referred to as "closed loop" systems.[۱۳]

These systems may be economical because they flatten out load variations on the power grid, permitting thermal power stations such as coal-fired plants and نیروگاه هسته‌ایs that provide base-load electricity to continue operating at peak efficiency, while reducing the need for "peaking" power plants that use the same fuels as many base-load thermal plants, gas and oil, but have been designed for flexibility rather than maximal efficiency. Hence pumped storage systems are crucial when coordinating large groups of heterogeneous generators. Capital costs for pumped-storage plants are relatively high, although this is somewhat mitigated by their long service life of up to 75 years or more, which is three to five times longer than utility-scale batteries.

مخزن بالایی (Llyn Stwlan) و سد نیروگاه تلمبه‌ای-ذخیره‌ای فستیونوگو در شمال ولز. نیروگاه در پایین‌دست دارای چهار توربین ژنراتور است که در صورت نیاز ۳۶۰ مگاوات برق را ظرف ۶۰ ثانیه تولید می‌کنند.

Along with energy management, pumped storage systems help control electrical network بسامد and provide reserve generation. Thermal plants are much less able to respond to sudden changes in electrical demand, potentially causing frequency and ولتاژ instability. Pumped storage plants, like other hydroelectric plants, can respond to load changes within seconds.

The most important use for pumped storage has traditionally been to balance baseload powerplants, but may also be used to abate the fluctuating output of intermittent energy sources. Pumped storage provides a load at times of high electricity output and low electricity demand, enabling additional system peak capacity. In certain jurisdictions, electricity prices may be close to zero or occasionally negative on occasions that there is more electrical generation available than there is load available to absorb it; although at present this is rarely due to wind or solar power alone, increased wind and solar generation will increase the likelihood of such occurrences. It is particularly likely that pumped storage will become especially important as a balance for very large scale فتوولتاییک generation.[۱۴] Increased long distance transmission capacity combined with significant amounts of energy storage will be a crucial part of regulating any large-scale deployment of intermittent renewable power sources.[۱۵] The high non-firm renewable electricity penetration in some regions supplies 40% of annual output, but 60% may be reached before additional storage is necessary.[۱۶][۱۷][۱۸]

تولید پراکنده

[ویرایش]

While smaller scale pumped storage experiences an economy of scale penalty, there are small-scale installations of such technology, including a recent 13 MW project in Germany. Shell Energy has proposed a 5 MW project in the U.S. state of Washington. Some have proposed small pumped storage plants in buildings, although these are economically unfeasible given the economies of scale present.[۱۹] Also, a large volume of water is required for a meaningful storage capacity which is a difficult fit for an urban setting.[۱۹] Nevertheless, some authors defend its technological simplicity and secure provision of water as important externalities.[۱۹]

تاریخچه

[ویرایش]

نخستین نیروگاه‌های تلمبه‌ای-ذخیره‌ای در دههٔ ۱۸۹۰ در ایتالیا و سوییس ساخته شدند. در دههٔ ۱۹۳۰ میلادی توربین‌های آبی معکوس‌پذیر قابل دسترسی شدند. این توربین‌ها می‌توانستند به عنوان موتور پمپ هم استفاده شوند و در هر دو مرحله بالا کشیدن آب و رها کردنش به سوی پایین استفاده شوند. The latest in large-scale engineering technology are variable speed machines for greater efficiency. These machines operate in synchronization with the network frequency when generating, but operate asynchronously (independent of the network frequency) when pumping.

The first use of pumped-storage in the United States was in 1930 by the Connecticut Electric and Power Company, using a large reservoir located near New Milford, Connecticut, pumping water from the Housatonic River to the storage reservoir 230 feet above.[۲۰]

به‌کارگیری در جهان

[ویرایش]
تصویر ماهواره‌ای از مخزن‌های بالا و پایین سد کوهستان اسمیت در ویرجینیا، آمریکا
مخازن تلمبه‌ای-ذخیره‌ای در سد تامبارا در ژاپن

In 2009, world pumped storage generating capacity was 104 GW,[۲۱] while other sources claim 127 GW, which comprises the vast majority of all types of utility grade electric storage.[۲۲] The EU had 38.3 GW net capacity (36.8% of world capacity) out of a total of 140 GW of hydropower and representing 5% of total net electrical capacity in the EU. ژاپن had 25.5 GW net capacity (24.5% of world capacity).[۲۱]

In 2010 the United States had 21.5 GW of pumped storage generating capacity (20.6% of world capacity).[۲۳] PSH generated (net) -5.501 GWh of energy in 2010 in the US[۲۴] because more energy is consumed in pumping than is generated. Nameplate pumped storage capacity had grown to 21.6 GW by 2014, with pumped storage comprising 97% of grid-scale energy storage in the US. As of late 2014, there were 51 active project proposals with a total of 39 GW of new nameplate capacity across all stages of the FERC licensing process for new pumped storage hydroelectric plants in the US, but no new plants were currently under construction in the US at the time.[۲۵][۲۶]

The five largest operational pumped-storage plants are listed below (for a detailed list see List of pumped-storage hydroelectric power stations):

نیروگاه کشور مختصات جغرافیایی ظرفیت (MW) منابع
Bath County Pumped Storage Station ایالات متحده ۳۸°۱۲′۳۲″ شمالی ۷۹°۴۸′۰۰″ غربی / ۳۸٫۲۰۸۸۹°شمالی ۷۹٫۸۰۰۰۰°غربی / 38.20889; -79.80000 (Bath County Pumped-storage Station) 3,003 [۲۷]
Guangdong Pumped Storage Power Station چین ۲۳°۴۵′۵۲″ شمالی ۱۱۳°۵۷′۱۲″ شرقی / ۲۳٫۷۶۴۴۴°شمالی ۱۱۳٫۹۵۳۳۳°شرقی / 23.76444; 113.95333 (Guangzhou Pumped Storage Power Station) 2,400 [۲۸][۲۹]
Huizhou Pumped Storage Power Station چین ۲۳°۱۶′۰۷″ شمالی ۱۱۴°۱۸′۵۰″ شرقی / ۲۳٫۲۶۸۶۱°شمالی ۱۱۴٫۳۱۳۸۹°شرقی / 23.26861; 114.31389 (Huizhou Pumped Storage Power Station) 2,400 [۳۰][۳۱][۳۲][۳۳]
Okutataragi Pumped Storage Power Station ژاپن ۳۵°۱۴′۱۳″ شمالی ۱۳۴°۴۹′۵۵″ شرقی / ۳۵٫۲۳۶۹۴°شمالی ۱۳۴٫۸۳۱۹۴°شرقی / 35.23694; 134.83194 (Okutataragi Hydroelectric Power Station) 1,932 [۳۴]
Ludington Pumped Storage Power Plant ایالات متحده ۴۳°۵۳′۳۷″ شمالی ۸۶°۲۶′۴۳″ غربی / ۴۳٫۸۹۳۶۱°شمالی ۸۶٫۴۴۵۲۸°غربی / 43.89361; -86.44528 (Ludington Pumped Storage Power Plant) 1,872 [۳۵][۳۶]
Note: this table shows the power-generating capacity in megawatts as is usual for power stations. However, the overall energy-storage capacity in کیلووات ساعتs (MWh) is a different intrinsic property and can not be derived from the above given figures.

The five countries with largest power capacity by 2017:[۳۷]

کشور ظرفیت تولید (GW)
چین 32
ژاپن 28.3
ایالات متحده 22.6
اسپانیا 8
ایتالیا 7.1
هند 6.8
سوییس 6.4
فرانسه 5.8

Pump-back hydroelectric dams

[ویرایش]

Conventional hydroelectric dams may also make use of pumped storage in a hybrid system that both generates power from water naturally flowing into the reservoir as well as storing water pumped back to the reservoir from below the dam. The Grand Coulee Dam in the US was expanded with a pump-back system in 1973.[۳۸] Existing dams may be repowered with reversing turbines thereby extending the length of time the plant can operate at capacity. Optionally a pump back powerhouse such as the Russell Dam (1992) may be added to a dam for increased generating capacity. Making use of an existing dams upper reservoir and transmission system can expedite projects and reduce costs.

تکنولوژی‌های بالقوه

[ویرایش]

دریایی

[ویرایش]

Pumped storage plants can operate with seawater, although there are additional challenges compared to using fresh water. In 1999, the 30 MW Yanbaru project in Okinawa was the first demonstration of seawater pumped storage. It has since been decommissioned. A 300 MW seawater-based Lanai Pumped Storage Project was considered for Lanai, Hawaii, and seawater-based projects have been proposed in Ireland.[۳۹] A pair of proposed projects in the بیابان آتاکاما in northern Chile would use 600 MW of photovoltaic solar (Skies of Tarapacá) together with 300 MW of pumped storage (Mirror of Tarapacá) raising seawater ۶۰۰ متر (۲٬۰۰۰ فوت) up a coastal cliff.[۴۰][۴۱]

مخازن زیرزمینی

[ویرایش]

The use of underground reservoirs has been investigated. Recent examples include the proposed Summit project in نورتون، اوهایو، the proposed Maysville project in کنتاکی (underground limestone mine), and the Mount Hope project in نیوجرسی، which was to have used a former iron mine as the lower reservoir. The proposed energy storage at the Callio site in پیهایاروی (فنلاند) would utilize the deepest base metal mine in Europe, with ۱٬۴۵۰ متر (۴٬۷۶۰ فوت) elevation difference.[۴۲] Several new underground pumped storage projects have been proposed. Cost-per-kilowatt estimates for these projects can be lower than for surface projects if they use existing underground mine space. There are limited opportunities involving suitable underground space, but the number of underground pumped storage opportunities may increase if abandoned coal mines prove suitable.[۴۳]

سیستم‌های انحصاری

[ویرایش]

Small pumped-storage hydropower plants can be built on streams and within infrastructures, such as drinking water networks[۴۴] and artificial snow making infrastructures. Such plants provide distributed ذخیره انرژی and distributed flexible تولید الکتریسیته and can contribute to the decentralized integration of intermittent renewable energy technologies, such as توان بادی and توان خورشیدی. Reservoirs that can be used for small pumped-storage hydropower plants could include[۴۵] natural or artificial lakes, reservoirs within other structures such as irrigation, or unused portions of mines or underground military installations. In سوئیس one study suggested that the total installed capacity of small pumped-storage hydropower plants in 2011 could be increased by 3 to 9 times by providing adequate policy instruments.[۴۵]

مخازن زیرآبی

[ویرایش]

In March 2017 the research project StEnSea (Storing Energy at Sea) announced their successful completion of a four-week test of a pumped storage underwater reservoir. In this configuration a hollow sphere submerged and anchored at great depth acts as the lower reservoir, while the upper reservoir is the enclosing body of water. Electricity is created when water is let in via a reversible turbine integrated into the sphere. During off-peak hours the turbine changes direction and pumps the water out again, using "surplus" electricity from the grid. The quantity of power created when water is let in grows proportionally to the height of the column of water above the sphere, in other words: the deeper the sphere is located, the more potential energy it can store, which can be transformed into electric power. On the other hand, pumping the water back out at greater depths also uses up more power, since the turbine-turned-pump must act on the same entire column of water.

As such the energy storage capacity of the submerged reservoir is not governed by the انرژی پتانسیل گرانشی in the traditional sense, but rather by the vertical pressure variation.

While StEnSea's test took place at a depth of 100 m in the fresh water دریاچه کنستانس، the technology is foreseen to be used in salt water at greater depths. Since the submerged reservoir needs only a connecting electrical cable, the depth at which it can be employed is limited only by the depth at which the turbine can function, currently limited to 700 m. The challenge of designing salt water pumped storage in this underwater configuration brings a range of advantages:

  • No land area is required,
  • No mechanical structure other than the electrical cable needs to span the distance of the potential energy difference,
  • In the presence of sufficient seabed area multiple reservoirs can scale the storage capacity without limits,
  • Should a reservoir collapse, the consequences would be limited apart from the loss of the reservoir itself,
  • Evaporation from the upper reservoir has no effect on the energy conversion efficiency,
  • Transmission of electricity between the reservoir and the grid can be established from a nearby نیروگاه بادی دریایی limiting transmission loss and obviating the need for onshore cabling permits.

A current commercial design featuring a sphere with an inner diameter of 30 m submerged to 700 m would correspond to a 20 MWh capacity which with a 5 MW turbine would lead to a 4-hour discharge time. An energy park with multiple such reservoirs would bring the storage cost to around a few eurocents per kWh with construction and equipment costs in the range €۱٬۲۰۰-€1,400 per kW. To avoid excessive transmission cost and loss, the reservoirs should be placed off deep water coasts of densely populated areas, such as Norway, Spain, USA and Japan. With this limitation the concept would allow for worldwide electricity storage of close to 900 GWh.[۴۶][۴۷]

For comparison, a traditional, gravity-based pumped storage capable of storing 20 MWh in a water reservoir the size of a 30 m sphere would need a hydraulic head of 519 m with the elevation spanned by a pressurized water pipe requiring typically a hill or mountain for support.

جستارهای وابسته

[ویرایش]

منابع

[ویرایش]
  1. http://poppware.de/Storage_for_a_secure_Power_Supply_from_Wind_and_Sun.pdf
  2. https://www.researchgate.net/publication/271539381_Pumped_hydro_energy_storage_system_A_technological_review
  3. "DOE Global Energy Storage Database". www.energystorageexchange.org. Retrieved 10 February 2017.
  4. "Energy storage - Packing some power". اکونومیست. 2011-03-03. Retrieved 2012-03-11.
  5. Jacob, Thierry.Pumped storage in Switzerland - an outlook beyond 2000 Stucky. Accessed: 13 February 2012.
  6. Levine, Jonah G. Pumped Hydroelectric Energy Storage and Spatial Diversity of Wind Resources as Methods of Improving Utilization of Renewable Energy Sources page 6, University of Colorado, December 2007. Accessed: 12 February 2012.
  7. Yang, Chi-Jen. Pumped Hydroelectric Storage دانشگاه دوک. Accessed: 12 February 2012.
  8. "Energy Storage". Archived from the original on 18 November 2015. Retrieved 26 February 2017.
  9. European Renewable Energy Network pp. 188
  10. خطای یادکرد: خطای یادکرد:برچسب <ref>‎ غیرمجاز؛ متنی برای یادکردهای با نام IPWCO وارد نشده است. (صفحهٔ راهنما را مطالعه کنید.).
  11. خطای یادکرد: خطای یادکرد:برچسب <ref>‎ غیرمجاز؛ متنی برای یادکردهای با نام mutzen وارد نشده است. (صفحهٔ راهنما را مطالعه کنید.).
  12. "Pumped Hydroelectric Storage | Energy Storage Association". energystorage.org. Retrieved 15 January 2017.
  13. "FERC: Hydropower - Pumped Storage Projects". www.ferc.gov. Retrieved 15 January 2017.
  14. Summary Energy from the Desert - Practical Proposals for Very Large Scale Photovoltaic Power Generation (VLS-PV) Systems بایگانی‌شده در ۲۰۰۷-۰۶-۱۳ توسط Wayback Machine
  15. http://www.nrel.gov/docs/fy17osti/67240.pdf
  16. "German grid operator sees 70% wind + solar before storage needed". Renew Economy. 7 December 2015. Retrieved 20 January 2017. Schucht says, in the region he is operating in, 42 per cent of the power supply (in output, not capacity), came from wind and solar – about the same as South Australia. Schucht believes that integration of 60 to 70 per cent variable renewable energy – just wind and solar – could be accommodated within the German market without the need for additional storage. Beyond that, storage will be needed.
  17. Dehmer, Dagmar (8 June 2016). "German electricity transmission CEO: '80% renewables is no problem'". Der Tagesspiegel / EurActiv.com. Retrieved 1 February 2017. There are a certain number of myths in the energy industry. One of them is that we need more flexibility in the system to integrate renewables, like energy storage, interruptible loads or backup power plants. That’s a myth. We are well on track to having a system that can accommodate between 70-80% renewable energy without the need for more flexibility options.
  18. "New record-breaking year for Danish wind power". Energinet.dk. 15 January 2016. Archived from the original on 25 January 2016.
  19. ۱۹٫۰ ۱۹٫۱ ۱۹٫۲ de Oliveira e Silva, Guilherme; Hendrick, Patrick (2016-10-01). "Pumped hydro energy storage in buildings". Applied Energy. 179: 1242–1250. doi:10.1016/j.apenergy.2016.07.046.
  20. "A Ten-Mile Storage Battery." Popular Science, July 1930, p. 60.
  21. ۲۱٫۰ ۲۱٫۱ International Energy Statistics
  22. Rastler et al. Electric Energy Storage Technology Options: A White Paper Primer on Applications, Costs, and Benefits. بایگانی‌شده در ۲۰۱۱-۰۸-۱۷ توسط Wayback Machine (Free download) EPRI, Palo Alto, CA, 2010. Accessed: 30 September 2011. Mirror
  23. "Archived copy". Archived from the original on 2010-05-28. Retrieved 2010-10-29.{{cite web}}: نگهداری یادکرد:عنوان آرشیو به جای عنوان (link)
  24. http://www.eia.gov/electricity/monthly/pdf/chap1.pdf Table 1.1
  25. "2014 Hydropower Market Report Highlights" (PDF). U.S. Department of Energy. Retrieved 19 February 2017.
  26. "2014 Hydropower Market Report" (PDF). U.S. Department of Energy. Retrieved 19 February 2017.
  27. Bath County Pumped-storage Station, archived from the original on 2012-01-03, retrieved 2011-12-30
  28. Pumped-storage hydroelectric power stations in China, archived from the original on 2012-12-08, retrieved 2010-06-25
  29. Guangzhou Pumped-storage Power Station (PDF), archived from the original (PDF) on 2011-07-07, retrieved 2010-06-25
  30. List of pumped-storage power plants in China 1 (Mandarin) بایگانی‌شده در ۲۰۱۱-۰۷-۰۷ توسط Wayback Machine
  31. List of pumped-storage power plants in China 2 (Mandarin) بایگانی‌شده در ۲۰۱۱-۰۷-۰۷ توسط Wayback Machine
  32. List of pumped-storage power plants in China 3 (Mandarin) بایگانی‌شده در ۲۰۱۱-۰۷-۰۷ توسط Wayback Machine
  33. Huizhou Pumped-storage Power Station, retrieved 2010-06-25
  34. "2003-2004 Electricity Review in Japan" (PDF). Japan Nuclear. Archived from the original (PDF) on 4 June 2013. Retrieved 1 September 2010.
  35. Dniester Pumped Storage Plant, Ukraine, retrieved 2010-09-01
  36. Tymoshenko launches the first unit of Dnister Hydroelectric Power Plant, archived from the original on 2011-07-11, retrieved 2010-09-01
  37. IRENA (2017). "Electricity Storage and Renewables: Costs and Markets to 2030", page 30. آژانس بین‌المللی انرژی‌های تجدیدپذیر, Abu Dhabi.
  38. Alternative Energy and Shale Gas Encyclopedia page 424
  39. http://www.sciencemag.org/news/2012/02/massive-energy-storage-courtesy-west-ireland
  40. "Project Espejo de Tarapacá". Valhalla. Retrieved 19 June 2017.
  41. http://www.power-technology.com/features/featurethe-mirror-of-tarapaca-chilean-power-project-harnesses-both-sun-and-sea-4872272/
  42. "Energy storage". Callio Pyhäjärvi (به انگلیسی). Retrieved 2018-03-14.
  43. "German Coal Mine to Be Reborn as Giant Pumped Storage Hydro Facility". Retrieved 20 March 2017.
  44. "Senator Wash". www.iid.com (به انگلیسی). Imperial Irrigation District. Retrieved 6 August 2016.
  45. ۴۵٫۰ ۴۵٫۱ Crettenand, N. (2012) "The facilitation of mini and small hydropower in Switzerland: shaping the institutional framework. With a particular focus on storage and pumped-storage schemes". Ecole Polytechnique Fédérale de Lausanne (EPFL). PhD Thesis N° 5356. http://infoscience.epfl.ch/record/176337?ln=en
  46. "Storing energy at sea". forschung-energiespeicher.info. 2016-10-17. Retrieved 2017-03-06.
  47. "Unterwasser-Pumpspeicherkraftwerk erfolgreich getestet" [Underwater Pumped Storage Powerplant successfully tested]. Fraunhofer Institute for Wind Energy and Energy System Technology (به آلمانی). 2017-03-03. Retrieved 2017-03-06.

پیوند به بیرون

[ویرایش]